
Chapter 6 Problem 44 †

Given
Q = −30 µC = −30.0 × 10−6 C
R = 10.0 cm = 0.100 m

Solution
a) Find the electric field at r = 2.0 cm.

Since this radius is inside the spherical charge distribution, we need to determine how much of the total
charge is inside this sphere. The charge density is

ρ =
Q

4
3
πR3

=
−30.0 × 10−6 C
4
3
π(0.100 m)3

= −7.16 × 10−3 C/m3 (Eq.1)

The charge inside the Gaussian surface is

qenc = ρV = ρ4
3
πr3 = (−7.16 × 10−3 C)4

3
π(0.020 m)3 = −2.40 × 10−7 C

Now from Gauss’ Law∮
S

~E · ~A = Φ =
qenc
ε0

We are dealing with spherical symmetry, therefore the electric field is a constant over the integral and the
total surface area is that of a sphere. Therefore,

E4πr2 =
qenc
ε0

The electric field is then

E =
qenc

4πε0r2
(Eq.2)

Substituting in our values gives

E =
−2.40 × 10−7 C

4π(8.85 × 10−12 C2/Nm2)(0.020 m)2

E = −5.40 × 106 N/C

The negative sign means the electric field is entering the surface not leaving. This is opposite of what is
illustrated in the provided diagram.
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b) What is the electric field at r = 5.0 cm.

Find the charge inside the surface by multiplying the charge density calculated in Eq. (1) and multiply
by the volume.

qenc = ρV = ρ4
3
πr3 = (−7.16 × 10−3 C)4

3
π(0.050 m)3 = 2.40 × 10−7 C = −3.75 × 10−6 C

Using Eq. (2) we have an electric field of

E =
−3.75 × 10−6 C

4π(8.85 × 10−12 C2/Nm2)(0.050 m)2

E = −1.35 × 107 N/C

c) What is the electric field at r = 20.0 cm?

This distance is beyond the surface of the charge distribution. Therefore, the enclosed charge is the same
as the total charge. Now use Eq. (2) and calculate the electric field.

E =
−3.0 × 10−5 C

4π(8.85 × 10−12 C2/Nm2)(0.20 m)2

E = −6.74 × 106 N/C


