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Solution

The charge is uniformly distributed over the rod. Therefore, A = q/L.

The electric field for a continuous linear charge on this wire is

. z=L/2 kd
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z=—L/2 r
The infinitesimal charge is related to the infinitesimal length along the charged wire by the following

relationship.

qdx
dg = \dr = —

Depending on the position of our point of interest, how we define r and 7 will change. Eventually
everything needs to be defined in terms of the variable of integration, x.
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Now we can look at the two cases.

What is the electric field at P;?

In this case, the vector r goes from a location on the wire a distance, z, from the origin to a point that is
a/2 above the middle of the wire in the x-direction. Therefore,

F=—xi+4a/2)
The magnitude is
V(=a)? + (a/2)? = V/a? + a?/4

The unit vector is
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The integral can now be written as
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This is really two integrals. One that involves the ¢ term and one that involves the j term.
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The 7 term equals zero since the point of interest is centered over the wire. Any field on the right-hand
side will cancel out the left-hand side. (If you want to prove this to yourself mathematically, you can do a
u-substitution with v = 22 4+ a?/4.) The 7 term does not cancel because every location along the wire is

contributing an upward electric field. This integral is solved using a tangent substitution. The result of
the integral gives
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Now X = ¢/L and k = 2—, then
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Now we can move on to the next case.
What is the electric field at P?

In this case, the vector r goes from a location on the wire a distance, x, from the origin to a point that is
L/2 + a from the origin in the x-direction. Therefore,

F=(L/2+a)i—zi=(L/2+a—x)i
The magnitude is

r=L/2+a—=x
The unit vector is

P=1

The integral can now be written as
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Do a u-substitution with
u=L/24a—x

du = —dx

The lower limit becomes
w=L/24+a—-(—-L/2)=L+a

The upper limit becomes
urp=L/24+a—(L/2)=a

The transformed integral is now
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Now A\ = ¢/L and k = -, then
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or to match the solution in the textbook
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