Chapter 5 Problem $49{ }^{\dagger}$

Given

$k=8.99 \times 10^{9} \frac{\mathrm{Nm}^{2}}{\mathrm{C}^{2}}$
$q_{1}=3.00 \mu C=3.0 \times 10^{-6} C$
$q_{2}=12.00 \mu C=12.0 \times 10^{-6} C$
$q_{3}=-2.00 n C=-2.0 \times 10^{-9} C$

Solution

a) Find the magnitude and direction of the force on the third charge when halfway between the first two charges.

The total force on the third charge is

$$
\vec{F}_{3}=k \frac{q_{1} q_{3}}{r_{31}^{2}} \hat{r}_{31}+k \frac{q_{2} q_{3}}{r_{32}^{2}} \hat{r}_{32}
$$

The unit vector between q_{1} and q_{3} is in the positive \hat{i} direction. The unit vector between q_{2} and q_{3} is in the negative \hat{i} direction. Now substitute in the charge values and the distances.

$$
\begin{aligned}
\vec{F}_{3}= & \left(8.99 \times 10^{9} \frac{N m^{2}}{C^{2}}\right) \frac{\left(3.0 \times 10^{-6} C\right)\left(-2.0 \times 10^{-9} C\right)}{(0.50 m)^{2}}(\hat{i})+\left(8.99 \times 10^{9} \frac{N m^{2}}{C^{2}}\right) \frac{\left(12.0 \times 10^{-6} C\right)\left(-2.0 \times 10^{-9} C\right)}{(0.50 \mathrm{~m})^{2}}(-\hat{i}) \\
& \vec{F}_{3}=2.16 \times 10^{-4} N(-\hat{i})+8.63 \times 10^{-4} N(\hat{i}) \\
& \vec{F}_{3}=6.47 \times 10^{-4} N(\hat{i})
\end{aligned}
$$

The force is $6.47 \times 10^{-4} N$ in the positive x-direction.
b) Find the magnitude and direction of the force on the third charge when it is 0.50 m to the left of the first charge.

The total force on the third charge is

$$
\vec{F}_{3}=k \frac{q_{1} q_{3}}{r_{31}^{2}} \hat{r}_{31}+k \frac{q_{2} q_{3}}{r_{32}^{2}} \hat{r}_{32}
$$

The unit vector between q_{1} and q_{3} is in the negative \hat{i} direction. The unit vector between q_{2} and q_{3} is in the negative \hat{i} direction. Now substitute in the charge values and the distances.

$$
\begin{aligned}
\vec{F}_{3}= & \left(8.99 \times 10^{9} \frac{N m^{2}}{C^{2}}\right) \frac{\left(3.0 \times 10^{-6} C\right)\left(-2.0 \times 10^{-9} C\right)}{(0.50 m)^{2}}(-\hat{i})+\left(8.99 \times 10^{9} \frac{N m^{2}}{C^{2}}\right) \frac{\left(12.0 \times 10^{-6} C\right)\left(-2.0 \times 10^{-9} C\right)}{(1.50 \mathrm{~m})^{2}}(-\hat{i}) \\
& \vec{F}_{3}=2.16 \times 10^{-4} N(\hat{i})+0.959 \times 10^{-4} N(\hat{i}) \\
& \vec{F}_{3}=3.12 \times 10^{-4} N(\hat{i})
\end{aligned}
$$

The force is $3.12 \times 10^{-4} N$ in the positive x-direction.

[^0]c) Find the magnitude and direction of the force on the third charge when it is 0.50 m above the second charge.

The total force on the third charge is

$$
\vec{F}_{3}=k \frac{q_{1} q_{3}}{r_{31}^{2}} \hat{r}_{31}+k \frac{q_{2} q_{3}}{r_{32}^{2}} \hat{r}_{32}
$$

The unit vector between q_{2} and q_{3} is in the positive \hat{j} direction. The unit vector between q_{1} and q_{3} is a little more complicated. First determine the vector pointing from q_{1} to q_{3} and then make it a unit vector.

$$
\vec{r}_{31}=1.00 \hat{i}+0.500 \hat{j} m
$$

The unit vector is then

$$
\hat{r}_{31}=\frac{\vec{r}_{31}}{\left\|\vec{r}_{31}\right\|}=\frac{1.00 \hat{i}+0.500 \hat{j} m}{\sqrt{(1.00 m)^{2}+(0.500 m)^{2}}}=0.894 \hat{i}+0.447 \hat{j}
$$

Now substitute in the charge values and the distances. Notice that the distance between q_{1} and q_{3} is $\sqrt{(1.0)^{2}+(0.5)^{2}}=1.12 \mathrm{~m}$.

$$
\begin{align*}
\vec{F}_{3}= & \left(8.99 \times 10^{9} \frac{N m^{2}}{C^{2}}\right) \frac{\left(3.0 \times 10^{-6} C\right)\left(-2.0 \times 10^{-9} C\right)}{(1.12 m)^{2}}(0.894 \hat{i}+0.447 \hat{j}) \\
& +\left(8.99 \times 10^{9} \frac{N m^{2}}{C^{2}}\right) \frac{\left(12.0 \times 10^{-6} C\right)\left(-2.0 \times 10^{-9} C\right)}{(0.500 m)^{2}}(\hat{j}) \tag{1}\\
\vec{F}_{3}= & 4.30 \times 10^{-5} N(-0.894 \hat{i}-0.447 \hat{j})+8.63 \times 10^{-4} N(-\hat{j}) \\
\vec{F}_{3}= & -3.84 \times 10^{-5} N(\hat{i})-1.92 \times 10^{-5} N(\hat{j})-8.63 \times 10^{-4} N(\hat{j}) \\
\vec{F}_{3}= & -3.84 \times 10^{-5} N(\hat{i})-8.82 \times 10^{-4} N(\hat{j})
\end{align*}
$$

The magnitude of the total force is

$$
F_{3}=\sqrt{\left(-3.84 \times 10^{-5}\right)^{2}+\left(-8.82 \times 10^{-4}\right)^{2}} N=8.83 \times 10^{-4} N
$$

The direction (angle) of the total force is

$$
\phi=\tan ^{-1}\left(\frac{-8.82 \times 10^{-4} N}{-3.84 \times 10^{-5} N}\right)=\tan ^{-1}(23.0)=87.5^{\circ}
$$

Notice that the vector is pointed towards the third quadrant, so the angle given should be increased by 180°. Therefore the angle is 267.5° counter-clockwise from the positive x-axis. This is the same at 66.5° below the negative x -axis.

[^0]: ${ }^{\dagger}$ Problem from Univesity Physics by Ling, Sanny and Moebs (OpenStax)

