Chapter 9 Problem $65{ }^{\dagger}$

Given

$m_{1}=1040 \mathrm{~kg}$
$m_{2}=2140 \mathrm{~kg}$
$\Delta x=12.3 \mathrm{~m}$
$\mu=0.712$

Solution

Show that one of the cars was traveling faster than $55 \mathrm{~km} / \mathrm{h}(15.3 \mathrm{~m} / \mathrm{s})$.
From the distance they skid after the collision, we can determine the work done by friction. The magnitude of the normal force is the same as the weight of the two cars combined assuming the intersection is flat.

$$
\begin{aligned}
& W=-\mu N \Delta x=-\mu\left(m_{1}+m_{2}\right) g \Delta x \\
& W=-(0.712)(1040 \mathrm{~kg}+2140 \mathrm{~kg})\left(9.80 \mathrm{~m} / \mathrm{s}^{2}\right)(12.3 \mathrm{~m}) \\
& W=-272,900 \mathrm{~J}
\end{aligned}
$$

The work done by friction is equal to the change in the kinetic energy. Therefore, the kinetic energy just after the collision is

$$
\begin{aligned}
& W=\Delta K=K_{f}-K_{i} \\
& K_{i}=K_{f}-W=0 J-(-272,900 J)=272,900 J
\end{aligned}
$$

From the kinetic energy the velocity of the combined cars after the collision is

$$
\begin{aligned}
& K_{c}=\frac{1}{2}\left(m_{1}+m_{2}\right) v_{c}^{2} \\
& v_{c}=\sqrt{\frac{2 K_{c}}{m_{1}+m_{2}}}=\sqrt{\frac{2(272,900 \mathrm{~J})}{1040 \mathrm{~kg}+2140 \mathrm{~kg}}}=13.1 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

Now use conservation of momentum to determine whether one of the cards was speeding. From conservation of momentum we have

$$
\begin{aligned}
& \vec{p}_{i}=\vec{p}_{f} \\
& \vec{p}_{1}+\vec{p}_{2}=\vec{p}_{c} \\
& m_{1} \vec{v}_{1}+m_{2} \vec{v}_{2}=\left(m_{1}+m_{2}\right) \vec{v}_{c}
\end{aligned}
$$

[^0]Assume car 1 is traveling in the x-direction and car 2 is traveling in the y-direction, then the x -component of the momentum equation is

$$
\begin{equation*}
m_{1} v_{1}=\left(m_{1}+m_{2}\right) v_{c} \cos \theta \tag{1}
\end{equation*}
$$

The y-component equation is

$$
\begin{equation*}
m_{2} v_{2}=\left(m_{1}+m_{2}\right) v_{c} \sin \theta \tag{2}
\end{equation*}
$$

If car 1 is traveling at the limit of $15.3 \mathrm{~m} / \mathrm{s}$, then from equation (1) the angle θ must be

$$
\begin{aligned}
& \theta=\cos ^{-1}\left(\frac{m_{1} v_{1}}{\left(m_{1}+m_{2}\right) v_{c}}\right)=\cos ^{-1}\left(\frac{(1040 \mathrm{~kg})(15.3 \mathrm{~m} / \mathrm{s})}{(1040 \mathrm{~kg}+2140 \mathrm{~kg})(13.1 \mathrm{~m} / \mathrm{s})}\right) \\
& \theta=67.5^{\circ}
\end{aligned}
$$

Using this in equation (2), v_{2} must be

$$
\begin{aligned}
& v_{2}=\frac{\left(m_{1}+m_{2}\right) v_{c} \sin \theta}{m_{2}}=\frac{(1040 \mathrm{~kg}+2140 \mathrm{~kg})(13.1 \mathrm{~m} / \mathrm{s}) \sin 67.5^{\circ}}{(2140 \mathrm{~kg})} \\
& v_{2}=18.0 \mathrm{~m} / \mathrm{s} \quad(64.8 \mathrm{~km} / \mathrm{h})
\end{aligned}
$$

If car 2 is traveling at the limit of $15.3 \mathrm{~m} / \mathrm{s}$, then from equation (2) the angle θ must be

$$
\begin{aligned}
& \theta=\sin ^{-1}\left(\frac{m_{2} v_{2}}{\left(m_{1}+m_{2}\right) v_{c}}\right)=\sin ^{-1}\left(\frac{(2140 \mathrm{~kg})(15.3 \mathrm{~m} / \mathrm{s})}{(1040 \mathrm{~kg}+2140 \mathrm{~kg})(13.1 \mathrm{~m} / \mathrm{s})}\right) \\
& \theta=51.8^{\circ}
\end{aligned}
$$

Using this in equation (1), v_{1} must be

$$
\begin{aligned}
& v_{1}=\frac{\left(m_{1}+m_{2}\right) v_{c} \cos \theta}{m_{1}}=\frac{(1040 \mathrm{~kg}+2140 \mathrm{~kg})(13.1 \mathrm{~m} / \mathrm{s}) \cos 51.8^{\circ}}{1040 \mathrm{~kg}} \\
& v_{2}=24.8 \mathrm{~m} / \mathrm{s} \quad(89.2 \mathrm{~km} / \mathrm{h})
\end{aligned}
$$

Either way, one of the cars has to be speeding.

[^0]: ${ }^{\dagger}$ Problem from Essential University Physics, Wolfson

