Chapter 9 Problem $48{ }^{\dagger}$

Given

$$
\begin{aligned}
& m_{1}=1250 \mathrm{~kg} \\
& \vec{v}_{1}=\{36.2 \hat{i}+12.7 \hat{j}\} \mathrm{m} / \mathrm{s} \\
& m_{2}=448 \mathrm{~kg} \\
& \vec{v}_{2}=\{13.8 \hat{i}+10.2 \hat{j}\} \mathrm{m} / \mathrm{s}
\end{aligned}
$$

Solution

If the car and wagon stick together, find their velocity after the collision.
By conservation of momentum, the momentum of the car-wagon system before and after the collision is the same.

$$
\begin{aligned}
& \vec{p}_{\text {before }}=\vec{p}_{\text {after }} \\
& \vec{p}_{1}+\vec{p}_{2}=\vec{p}_{T} \\
& m_{1} \vec{v}_{1}+m_{2} \vec{v}_{2}=\left(m_{1}+m_{2}\right) \vec{v}_{T} \\
& \vec{v}_{T}=\frac{m_{1} \vec{v}_{1}+m_{2} \vec{v}_{2}}{\left(m_{1}+m_{2}\right)} \\
& \vec{v}_{T}=\frac{(1250 \mathrm{~kg})\{36.2 \hat{i}+12.7 \hat{j}\} \mathrm{m} / \mathrm{s}+(448 \mathrm{~kg})\{13.8 \hat{i}+10.2 \hat{j}\} \mathrm{m} / \mathrm{s}}{(1250 \mathrm{~kg}+448 \mathrm{~kg})} \\
& \vec{v}_{T}=\frac{\{45,250 \hat{i}+15,875 \hat{j}\} \mathrm{kg} \cdot \mathrm{~m} / \mathrm{s}+\{6,182 \hat{i}+4,570 \hat{j}\} \mathrm{kg} \cdot \mathrm{~m} / \mathrm{s}}{(1698 \mathrm{~kg})} \\
& \vec{v}_{T}=\frac{\{51,432 \hat{i}+20,445 \hat{j}\} \mathrm{kg} \cdot \mathrm{~m} / \mathrm{s}}{(1698 \mathrm{~kg})} \\
& \vec{v}_{T}=\{30.3 \hat{i}+12.0 \hat{j}\} \mathrm{m} / \mathrm{s}
\end{aligned}
$$

In polar coordinates this velocity is

$$
\begin{aligned}
& v=\sqrt{(30.3 \mathrm{~m} / \mathrm{s})^{2}+(12.0 \mathrm{~m} / \mathrm{s})^{2}}=32.6 \mathrm{~m} / \mathrm{s} \\
& \theta=\tan ^{-1}\left(\frac{12.0 \mathrm{~m} / \mathrm{s}}{30.3 \mathrm{~m} / \mathrm{s}}\right)=21.6^{\circ}
\end{aligned}
$$

[^0]
[^0]: ${ }^{\dagger}$ Problem from Essential University Physics, Wolfson

