Chapter 9 Problem $39{ }^{\dagger}$

Given

Three equal masses
$\vec{r}_{1}=\left\{\left(6 t^{2}+5\right) \hat{i}\right\}$
$\vec{r}_{2}=\{(4 t+3) \hat{i}+4 t \hat{j}\}$
$\vec{r}_{3}=\{(8 t) \hat{i}+(t+4) \hat{j}\}$

Solution

a) Find the position of the center of mass.

Assume that each of the masses have a value of 1 kg . Then the total mass is

$$
M=3 \mathrm{~kg}
$$

The position of the center of mass is then

$$
\begin{aligned}
\vec{R} & =\frac{\Sigma m_{i} \vec{r}_{i}}{M}=\frac{m \Sigma \vec{r}_{i}}{M} \\
\vec{R} & =\frac{(1 k g)\left(\left\{\left(6 t^{2}+5\right) \hat{i}\right\}+\{(4 t+3) \hat{i}+4 t \hat{j}\}+\{(8 t) \hat{i}+(t+4) \hat{j}\}\right)}{3 k g} \\
\vec{R} & =\left\{\left(2 t^{2}+4 t+\frac{8}{3}\right) \hat{i}+\left(\frac{5}{3} t+\frac{4}{3}\right) \hat{j}\right\}
\end{aligned}
$$

b) Find the velocity of the center of mass.

From the position of the center of mass, take the first derivative wrt. time and get the velocity.

$$
\begin{aligned}
\vec{V} & =\frac{d \vec{R}}{d t}=\frac{d\left\{\left(2 t^{2}+4 t+\frac{8}{3}\right) \hat{i}+\left(\frac{5}{3} t+\frac{4}{3}\right) \hat{j}\right\}}{d t} \\
\vec{V} & =\left\{(4 t+4) \hat{i}+\left(\frac{5}{3}\right) \hat{j}\right\}
\end{aligned}
$$

c) Find the acceleration of the center of mass.

From the velocity of the center of mass, take the first derivative wrt. time and get the acceleration.

$$
\begin{aligned}
& \vec{A}=\frac{d \vec{V}}{d t}=\frac{d\left\{(4 t+4) \hat{i}+\left(\frac{5}{3}\right) \hat{j}\right\}}{d t} \\
& \vec{A}=4 \hat{i}
\end{aligned}
$$

