Chapter 7 Problem $26{ }^{\dagger}$

Given

See Figure 7-16
Height at $\mathrm{A}=3.8 \mathrm{~m}$
Height at $\mathrm{B}=2.6 \mathrm{~m}$
Height at $\mathrm{C}=1.3 \mathrm{~m}$

Solution

a) Find the speed at B.

Since the particle starts at rest at A it has potential energy of $m g h_{A}$ and kinetic energy of 0 . At B the particle has potential energy of $m g h_{B}$ and kinetic energy of $\frac{1}{2} m v_{B}^{2}$. From conservation of mechanical energy

$$
\begin{aligned}
& K_{A}+U_{A}=K_{B}+U_{B} \\
& 0+m g h_{A}=\frac{1}{2} m v_{B}^{2}+m g h_{B}
\end{aligned}
$$

Solving for v_{B} gives

$$
\begin{aligned}
& \frac{1}{2} m v_{B}^{2}=m g h_{A}-m g h_{B} \\
& v_{B}^{2}=\frac{2 m g\left(h_{A}-h_{B}\right)}{m} \\
& v_{B}=\sqrt{2 g\left(h_{A}-h_{B}\right)}=\sqrt{2\left(9.80 m / s^{2}\right)(3.8 m-2.6 m)} \\
& v_{B}=4.85 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

b) Find the speed at C.

Use the same procedure as above but now use the height at C instead of B .

$$
\begin{aligned}
& v_{C}=\sqrt{2 g\left(h_{A}-h_{C}\right)}=\sqrt{2\left(9.80 \mathrm{~m} / \mathrm{s}^{2}\right)(3.8 m-1.3 \mathrm{~m})} \\
& v_{C}=7.00 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

c) Find the location of the right-hand turning point.

The turning point is when the height of the track matches the height at A. It appears that the track reaches a height of 3.8 m at $x=11 \mathrm{~m}$. This would be the right-hand turning point.

[^0]
[^0]: ${ }^{\dagger}$ Problem from Essential University Physics, Wolfson

