Chapter 3 Problem 58^{\dagger}

Given

$\vec{v}_{0}=\{11 \hat{i}+14 \hat{j}\} \mathrm{m} / \mathrm{s}$
$\vec{a}=\{-1.2 \hat{i}+0.26 \hat{j}\} \mathrm{m} / \mathrm{s}^{2}$
Particle begins at the origin.

Solution

a) When does the particle cross the y axis?

The position vector of the particle is

$$
\begin{aligned}
& \vec{r}=\vec{r}_{0}+\vec{v}_{0} t+\frac{1}{2} \vec{a} t^{2} \\
& \vec{r}=0+\{11 \hat{i}+14 \hat{j}\} t+\frac{1}{2}\{-1.2 \hat{i}+0.26 \hat{j}\} t^{2}
\end{aligned}
$$

Regrouping gives

$$
\vec{r}=\left\{\left(11 t-0.60 t^{2}\right) \hat{i}+\left(14 t+0.13 t^{2}\right) \hat{j}\right\} m
$$

The particle crosses the y axis when the x component equals zero.

$$
\begin{aligned}
& 11 t-0.60 t^{2}=0 \\
& (11-0.60 t) t=0
\end{aligned}
$$

The solutions to this equation are $t=0 \mathrm{~s}$ and $t=18.3 \mathrm{~s}$. The first solution is the initial condition of the problem. The second solution is when it crosses back again. Therefore,

$$
t=18.3 \mathrm{~s}
$$

b) What is the y coordinate at this time?

Take the y component of the position vector and substitute in $t=18.3 \mathrm{~s}$.

$$
y=14(18.3)+0.13(18.3)^{2}=300 m
$$

c) Find the speed and direction of the particle at this time.

The velocity at $t=18.3 s$ is

$$
\begin{aligned}
\vec{v} & =\vec{v}_{0}+\vec{a} t=\{11 \hat{i}+14 \hat{j}\} \mathrm{m} / \mathrm{s}+\{-1.2 \hat{i}+0.26 \hat{j}\} \mathrm{m} / \mathrm{s}^{2}(18.3 \mathrm{~s}) \\
\vec{v} & =\{-11.0 \hat{i}+18.8 \hat{j}\} \mathrm{m} / \mathrm{s}
\end{aligned}
$$

The magnitude of this vector is

$$
\begin{aligned}
& v=\sqrt{(-11.0)^{2}+(18.8)^{2}} \mathrm{~m} / \mathrm{s} \\
& v=21.8 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

The direction of this vector is in the second quadrant.

$$
\theta=\tan ^{-1}\left(\frac{18.8}{-11.0}\right)=120^{\circ}
$$

[^0]
[^0]: ${ }^{\dagger}$ Problem from Essential University Physics, Wolfson

