Chapter 15 Problem $40{ }^{\dagger}$

Given

$l=40 \mathrm{~cm}=0.40 \mathrm{~m}$
$w=55 \mathrm{~cm}=0.55 \mathrm{~m}$
$P_{\text {in }}=0.77 \mathrm{~atm}$
$P_{\text {out }}=0.22 \mathrm{~atm}$

Solution

Find the force required to pull the window inward.
The forces acting on the window are the outside pressure and the inside pressure.

$$
\begin{aligned}
& F=F_{\text {in }}-F_{\text {out }}=A P_{\text {in }}-A P_{\text {out }} \\
& F=A\left(P_{\text {in }}-P_{\text {out }}\right)=l w\left(P_{\text {in }}-P_{\text {out }}\right)
\end{aligned}
$$

Substitute in the known values gives

$$
\begin{aligned}
& F=(0.40 \mathrm{~m})(0.55 \mathrm{~m})(.77 \mathrm{~atm}-.22 \mathrm{~atm}) \\
& F=0.121 \mathrm{~atm} \cdot \mathrm{~m}^{2}
\end{aligned}
$$

Convert the atmospheres into Pascal's gives

$$
\begin{aligned}
& F=0.121 \mathrm{~atm} \cdot \mathrm{~m}^{2}\left(\frac{1.013 \times 10^{5} \mathrm{~N} / \mathrm{m}^{2}}{1 \mathrm{~atm}}\right) \\
& F=1.23 \times 10^{4} \mathrm{~N}
\end{aligned}
$$

No Worries! The passenger will not be able to exert this kind of force.

[^0]
[^0]: ${ }^{\dagger}$ Problem from Essential University Physics, Wolfson

