Chapter 15 Problem $23{ }^{\dagger}$

Given

$\Delta P=100 k P a$
$\Delta h=6.0 \mathrm{~m}$

Solution

Find the density of the fluid.
The hydrostatic equation states

$$
\frac{d P}{d h}=\rho g
$$

Solving for density gives

$$
\rho=\frac{1}{g} \frac{d P}{d h}
$$

For the given interval the differential can be replaced with a difference

$$
\rho=\frac{1}{g} \frac{\Delta P}{\Delta h}
$$

Now solve for density

$$
\begin{aligned}
& \rho=\frac{1}{\left(9.8 \mathrm{~m} / \mathrm{s}^{2}\right)} \frac{1.0 \times 10^{5} \mathrm{~Pa}}{(6.0 \mathrm{~m})} \\
& \rho=1.7 \times 10^{3} \mathrm{~kg} / \mathrm{m}^{3}
\end{aligned}
$$

[^0]
[^0]: ${ }^{\dagger}$ Problem from Essential University Physics, Wolfson

