Chapter 13 Problem $45{ }^{\dagger}$

Given

$t=5974$ cycles
$m=8.65 \mathrm{~g}=8.65 \times 10^{-3} \mathrm{~kg}$
$L=18.8 \mathrm{~cm}=0.188 \mathrm{~m}$

Solution

Find the length of the lecture.
The pencil is a physical pendulum and has a natural frequency determined by the equation

$$
\begin{equation*}
\omega=\sqrt{\frac{m g l}{I}} \tag{1}
\end{equation*}
$$

Assuming the pencil has a uniform distribution of mass, $l=L / 2$. The moment of inertia of the pencil is that of a rod rotated about one end. From Table 10.2 the moment of inertia is

$$
I=\frac{1}{3} m L^{2}
$$

Substituting these relationships into equation 1 gives

$$
\omega=\sqrt{\frac{m g l}{\frac{1}{3} m L^{2}}}=\sqrt{\frac{m g L / 2}{\frac{1}{3} m L^{2}}}=\sqrt{\frac{3 g}{2 L}}
$$

The time period is

$$
\begin{aligned}
& T=\frac{2 \pi}{\omega}=\frac{2 \pi}{\sqrt{\frac{3 g}{2 L}}}=2 \pi \sqrt{\frac{2 L}{3 g}}=2 \pi \sqrt{\frac{2(0.188 \mathrm{~m})}{3\left(9.8 m / s^{2}\right)}} \\
& T=0.7106 \mathrm{~s}
\end{aligned}
$$

Since there are 5974 time periods during this lecture, the lecture must be

$$
\begin{aligned}
& t=(5974 \text { cycles })(0.7106 \mathrm{~s} / \text { cycle })=4245 \mathrm{~s} \\
& t=70.8 \mathrm{~min}
\end{aligned}
$$

[^0]
[^0]: ${ }^{\dagger}$ Problem from Essential University Physics, Wolfson

