## Chapter 11 Problem $35{ }^{\dagger}$



## Given

$m_{w}=25 \mathrm{~kg}$
$m_{b}=15 \mathrm{~kg}$
$l=1.6 \mathrm{~m}$
$\omega=\frac{10 \mathrm{rev}}{\min }\left(\frac{2 \pi \mathrm{rad}}{1 \mathrm{rev}}\right)\left(\frac{1 \mathrm{~min}}{60 \mathrm{~s}}\right)=1.05 \mathrm{rad} / \mathrm{s}$

## Solution

Find the angular momentum of the spinning barbell.
Each of the weights on the barbell are a distance of $l / 2$ from the pivot point. Each of the weights have a moment of inertia of

$$
I_{w}=m_{w} r^{2}=m_{w}(l / 2)^{2}=m_{w} l^{2} / 4
$$

The bar of the barbell is spun about its center. From table 10.2 of the textbook the bar has a moment of inertia of

$$
I_{b}=(l / 12) m_{b} r^{2}
$$

The total moment of inertia of the barbell is

$$
I=2\left(m_{w} l^{2} / 4\right)+m_{b} r^{2} / 12
$$

The angular momentum is then

$$
\begin{aligned}
& L=I \cdot \omega=\left(2 m_{w} l^{2} / 4+m_{b} r^{2} / 12\right) \omega \\
& L=\left[2(25 \mathrm{~kg})(1.6 \mathrm{~m})^{2} / 4+(15 \mathrm{~kg})(1.6 \mathrm{~m})^{2} / 12\right](1.05 \mathrm{rad} / \mathrm{s}) \\
& L=37.0 \mathrm{~kg} \cdot \mathrm{~m}^{2} / \mathrm{s}
\end{aligned}
$$

[^0]
[^0]:    ${ }^{\dagger}$ Problem from Essential University Physics, Wolfson

