Chapter 8 Problem $14{ }^{\dagger}$

Given

$m_{m}=3.30 \times 10^{23} \mathrm{~kg}$
$r_{m}=2.44 \times 10^{6} \mathrm{~m}$
$m_{t}=1.35 \times 10^{23} \mathrm{~kg}$
$r_{t}=2.58 \times 10^{6} \mathrm{~m}$

Solution

a) Find the acceleration on the surface of Mercury.

The acceleration at the surface of Mercury is derived from Newton's $2^{\text {nd }}$ law. The only force acting on the object is gravity; therefore,

$$
\vec{F}_{g}=m \vec{a}
$$

where $F_{g}=G \frac{M m}{r^{2}}$ and is directed toward the center of the moon. Then

$$
G \frac{M m}{r^{2}}=m a
$$

The acceleration is then

$$
a=\frac{G M}{r^{2}}
$$

Substituting in the values for Mercury gives

$$
\begin{aligned}
& a_{m}=\frac{\left(6.672 \times 10^{-11} \mathrm{Nm}^{2} / \mathrm{kg}^{2}\right)\left(3.30 \times 10^{23} \mathrm{~kg}\right)}{\left(2.44 \times 10^{6} \mathrm{~m}\right)^{2}} \\
& a_{m}=3.70 \mathrm{~m} / \mathrm{s}^{2}
\end{aligned}
$$

b) Find the gravitational acceleration of Titan.

Substituting in the values for Titan gives

$$
\begin{aligned}
& a_{t}=\frac{\left(6.672 \times 10^{-11} \mathrm{Nm}^{2} / \mathrm{kg}^{2}\right)\left(1.35 \times 10^{23} \mathrm{~kg}\right)}{\left(2.58 \times 10^{6} \mathrm{~m}\right)^{2}} \\
& a_{t}=1.35 \mathrm{~m} / \mathrm{s}^{2}
\end{aligned}
$$

[^0]
[^0]: ${ }^{\dagger}$ Problem from Essential University Physics, Wolfson

