Chapter 7 Problem $43{ }^{\dagger}$

Given

$m=200 \mathrm{~g}=0.200 \mathrm{~kg}$
$k_{l}=130 \mathrm{~N} / \mathrm{m}$
$x_{l}=16 \mathrm{~cm}=0.16 \mathrm{~m}$
$k_{r}=280 \mathrm{~N} / \mathrm{m}$

Solution

a) Find the compression of the spring on the right-hand side.

The energy stored in the left-hand spring at the beginning of the problem is

$$
\Delta U=-W=-\int_{0}^{x_{l}}-k_{l} x d x=\frac{k_{l} x_{l}^{2}}{2}
$$

This is assuming that the potential energy in the spring is zero when $x=0 \mathrm{~m}$. When the spring is released, the potential energy in the spring is convert to kinetic energy. When the mass reaches the right-hand spring, the kinetic energy is converted into potential energy in the right-hand spring. The potential energy in this spring is

$$
\Delta U=-W=-\int_{0}^{x_{r}}-k_{r} x d x=\frac{k_{r} x_{r}^{2}}{2}
$$

Assuming there is no loss due to friction, these two potential energies must be equal.

$$
\frac{k_{l} x_{l}^{2}}{2}=\frac{k_{r} x_{r}^{2}}{2}
$$

Solving for x_{r} gives

$$
\begin{aligned}
& x_{r}=\sqrt{\frac{k_{l} x_{l}^{2}}{k_{r}}}=\sqrt{\frac{(130 \mathrm{~N} / \mathrm{m})(0.16 \mathrm{~m})^{2}}{(280 \mathrm{~N} / \mathrm{m})}}=0.109 \mathrm{~m} \\
& x_{r}=10.9 \mathrm{~cm}
\end{aligned}
$$

b) Find the velocity travelling between the blocks.

The potential energy stored in the left-hand block is converted to kinetic energy, which is given by the expression

$$
K=\frac{1}{2} m v^{2}
$$

Assuming no loss of energy due to friction, this kinetic energy must be equal to the potential energy stored in the left-hand spring.

$$
\frac{k_{l} x_{l}^{2}}{2}=\frac{m v^{2}}{2}
$$

Solving for velocity gives

$$
v=\sqrt{\frac{k_{l} x_{l}^{2}}{m}}=\sqrt{\frac{(130 N / m)(0.16 \mathrm{~m})^{2}}{0.200 \mathrm{~kg}}}=4.08 \mathrm{~m} / \mathrm{s}
$$

[^0]
[^0]: ${ }^{\dagger}$ Problem from Essential University Physics, Wolfson

