Chapter 7 Problem $27{ }^{\dagger}$

Given

$U=16 x^{2}-4$

Solution

a) Find the force when the particle is at $x=2.1 \mathrm{~m}$.

The relationship between force in the x direction and the potential energy is

$$
F_{x}=-\frac{d U}{d x}
$$

Substitute in the potential function given for this problem we get a force of

$$
\begin{equation*}
F_{x}=-\frac{d\left(16 x^{2}-4\right)}{d x}=-(16(2 x)-0)=-32 x \tag{1}
\end{equation*}
$$

Substituting in the value of $x=2.1 \mathrm{~m}$ gives

$$
F_{x}=-32(2.1 m)=-67.2 N=-67 N
$$

b) Find the force when the particle is at $x=0 \mathrm{~m}$.

Use equation (1) and substitute in $x=0 \mathrm{~m}$.

$$
F_{x}=-32(0 m)=0 N
$$

c) Find the force when the particle is at $x=-1.4 m$.

Use equation (1) and substitute in $x=-1.4 \mathrm{~m}$.

$$
F_{x}=-32(-1.4 m)=44.8 N=45 N
$$

[^0]
[^0]: ${ }^{\dagger}$ Problem from Essential University Physics, Wolfson

