Chapter 6 Problem 52 †

Given $F = a\sqrt{x} = ax^{1/2}$ $a = 9.5 N/m^{1/2}$

Solution

a) Find the work done by this force from x = 0 m to x = 3.0 m.

Since the force is changing with position, we use the following definition of work.

$$W = \int F dx$$

Integrate the force between x_1 and x_2 gives

$$W_{x_2-x_1} = \int_{x_1}^{x_2} a x^{1/2} dx = \frac{2}{3} a x^{3/2} \Big|_{x_1}^{x_2} = \frac{2}{3} a \left(x_2^{3/2} - x_1^{3/2} \right)$$
(1)

Now substitute in $x_1 = 0$ m and $x_2 = 3.0$ m and $a = 9.5 N/m^{1/2}$

$$W = \frac{2}{3}(9.5 \ N/m^{1/2}) \left((3.0 \ m)^{3/2} - (0 \ m)^{3/2} \right)$$
$$W = 32.9 \ J$$

b) Find the work done by this force from 3.0 m to 6.0 m.

Equation (1) can be used with the limits of $x_1 = 3.0 m$ and $x_2 = 6.0 m$.

$$W = \frac{2}{3}(9.5 \ N/m^{1/2}) \left((6.0 \ m)^{3/2} - (3.0 \ m)^{3/2} \right)$$
$$W = 60.2 \ J$$

c) Find the work done by this force from $6.0 \ m$ to $9.0 \ m$.

Equation (1) can be used with the limits of $x_1 = 6.0 m$ and $x_2 = 9.0 m$.

$$W = \frac{2}{3}(9.5 \ N/m^{1/2}) \left((9.0 \ m)^{3/2} - (6.0 \ m)^{3/2} \right)$$
$$W = 77.9 \ J$$

[†]Problem from Essential University Physics, Wolfson