Chapter 5 Problem $16{ }^{\dagger}$

Given

$m=1400 \mathrm{~kg}$
$\theta=25^{\circ}$
$a=0.57 \mathrm{~m} / \mathrm{s}^{2}$

Solution

Find the tension in the cable.
The free-body diagram is given above. The x-coordinate is chosen to be in the horizontal direction. Applying Netwon's $2^{\text {nd }}$ law gives

$$
\begin{aligned}
& \Sigma \vec{F}=m \vec{a} \\
& \vec{T}+\vec{W}+\vec{N}=m \vec{a}
\end{aligned}
$$

The acceleration is in the $+x$ direction. Therefore, the equation in unit vector notation is

$$
T \cos \theta \hat{i}+T \sin \theta \hat{j}-m g \hat{j}+N \hat{j}=m a \hat{i}
$$

The x -component equation is then

$$
\begin{equation*}
T \cos \theta=m a \tag{1}
\end{equation*}
$$

The y-component equation is

$$
\begin{equation*}
T \sin \theta-m g+N=0 \tag{2}
\end{equation*}
$$

From equation (1) the value of tension is

$$
\begin{aligned}
& T=\frac{m a}{\cos \theta}=\frac{(1400 \mathrm{~kg})\left(0.57 \mathrm{~m} / \mathrm{s}^{2}\right)}{\cos \left(25^{\circ}\right)} \\
& T=880 \mathrm{~N}
\end{aligned}
$$

[^0]
[^0]: ${ }^{\dagger}$ Problem from Essential University Physics, Wolfson

