Chapter 3 Problem $67{ }^{\dagger}$

Given

$y_{0}=8.2 \mathrm{ft}$
$y_{f}=10 \mathrm{ft}$
$x_{f}=15 \mathrm{ft}$
$v_{0}=26 \mathrm{ft} / \mathrm{s}$
$a=-32 \mathrm{ft} / \mathrm{s}^{2}$

Solution

Find the initial angle at which the ball is thrown.
From the initial values, the position vector is

$$
\begin{aligned}
& \vec{r}=\vec{r}_{0}+\vec{v}_{0} t+\frac{1}{2} \vec{a} t^{2} \\
& \vec{r}=8.2 f t \hat{j}+\{26 \mathrm{ft} / \mathrm{s} \cos \theta \hat{i}+26 \mathrm{ft} / \mathrm{s} \sin \theta \hat{j}\} t+\frac{1}{2}\left\{-32 \mathrm{ft} / \mathrm{s}^{2} \hat{j}\right\} t^{2}
\end{aligned}
$$

Regrouping gives

$$
\vec{r}=\left\{[(26 \mathrm{ft} / \mathrm{s}) t \cos \theta] \hat{i}+\left[(8.2 \mathrm{ft})+(26 \mathrm{ft} / \mathrm{s}) t \sin \theta-\left(16 \mathrm{ft} / \mathrm{s}^{2}\right) t^{2}\right] \hat{j}\right\}
$$

When the ball reaches the hoop, the x-component is equal to 15 ft . This gives a relationship between time and angle.

$$
(26 \mathrm{ft} / \mathrm{s}) t \cos \theta=15 \mathrm{ft}
$$

Solving for t gives

$$
t=\frac{15}{26 \cos \theta} s
$$

When the ball reachees the hoop, the y-component is at 10 ft . This gives a second relationship between time and angle.

$$
(8.2 \mathrm{ft})+(26 \mathrm{ft} / \mathrm{s}) t \sin \theta-\left(16 \mathrm{ft} / \mathrm{s}^{2}\right) t^{2}=10 \mathrm{ft}
$$

or

$$
\left(16 \mathrm{ft} / \mathrm{s}^{2}\right) t^{2}-(26 \mathrm{ft} / \mathrm{s}) t \sin \theta+1.8 \mathrm{ft}=0
$$

[^0]Substitute in the result from the x-component gives

$$
\begin{aligned}
& \left(16 \mathrm{ft} / \mathrm{s}^{2}\right)\left(\frac{15}{26 \cos \theta} s\right)^{2}-(26 \mathrm{ft} / \mathrm{s})\left(\frac{15}{26 \cos \theta} s\right) \sin \theta+1.8 \mathrm{ft}=0 \\
& (5.33 \mathrm{ft})(\cos \theta)^{-2}-(15 \mathrm{ft}) \tan \theta+(1.8 \mathrm{ft})=0
\end{aligned}
$$

Using the definition of secant $\left(\sec \theta=\cos ^{-1} \theta\right)$ and the trig. identity $\sec ^{2} \theta=1+\tan ^{2} \theta$, we get
$(5.33 \mathrm{ft})(\sec \theta)^{2}-(15 \mathrm{ft}) \tan \theta+(1.8 \mathrm{ft})=0$
$(5.33 f t)\left(1+\tan ^{2} \theta\right)-(15 f t) \tan \theta+(1.8 f t)=0$
$(5.33 \mathrm{ft}) \tan ^{2} \theta-(15 \mathrm{ft}) \tan \theta+(7.13 \mathrm{ft})=0$
Use the quadratic formula to solve for $\tan \theta$.

$$
\tan \theta=\frac{-(-15) \pm \sqrt{(-15)^{2}-4(5.33)(7.13)}}{2(5.33)}
$$

$$
\tan \theta=0.606 \text { or } 2.21
$$

Then

$$
\theta=31.2^{\circ} \text { or } 65.6^{\circ}
$$

Either angle will get the ball through the hoop. The first one gets the ball there faster; however, your coach will probably want you to put more arch on the shot to get the second solution.

[^0]: ${ }^{\dagger}$ Problem from Essential University Physics, Wolfson

