Chapter 3 Problem 34^{\dagger}

Given

$d=23 \mathrm{~m}$
$\vec{v}_{0}=41 \hat{i} \mathrm{~m} / \mathrm{s}$
$\vec{a}=-9.8 \hat{j} \mathrm{~m} / \mathrm{s}^{2}$

Solution

Find the height, h, from which the arrow was fired.
The position vector is given by

$$
\begin{aligned}
& \vec{r}=\vec{r}_{0}+\vec{v}_{0} t+\frac{1}{2} \vec{a} t^{2} \\
& \vec{r}=h \hat{j}+\{41 \mathrm{~m} / \mathrm{s} \hat{i}\} t+\frac{1}{2}\left\{-9.8 \mathrm{~m} / \mathrm{s}^{2} \hat{j}\right\} t^{2}
\end{aligned}
$$

Regrouping gives

$$
\vec{r}=\left\{(41 \mathrm{~m} / \mathrm{s}) t \hat{i}+\left(h-\left(4.9 \mathrm{~m} / \mathrm{s}^{2}\right) t^{2}\right) \hat{j}\right\}
$$

Using the x -component and setting it equal to $23 m$, the time becomes

$$
(41 \mathrm{~m} / \mathrm{s}) t=23 \mathrm{~m}
$$

$$
t=0.561 \mathrm{~s}
$$

At this time, the final height is zero. Setting the y-component equal to zero and substituting in for time gives

$$
\begin{aligned}
& h-\left(4.9 \mathrm{~m} / \mathrm{s}^{2}\right) t^{2}=0 \\
& h=\left(4.9 \mathrm{~m} / \mathrm{s}^{2}\right)(0.561 \mathrm{~s})^{2}=1.54 \mathrm{~m}
\end{aligned}
$$

[^0]
[^0]: ${ }^{\dagger}$ Problem from Essential University Physics, Wolfson

