Chapter 2 Problem 25^{\dagger}

Given

$t=1.12 \mathrm{~s}$
$v=11.0 \mathrm{~m} / \mathrm{s}$
Comes to a stop in 0.131 s

Solution

Find the acceleration while falling and deceleration while stopping.
While falling the acceleration is

$$
\bar{a}=\frac{\Delta v}{\Delta t}=\frac{v_{f}-v_{i}}{t_{f}-t_{i}}=\frac{11.0 \mathrm{~m} / \mathrm{s}-0 \mathrm{~m} / \mathrm{s}}{1.12 \mathrm{~s}-0 \mathrm{~s}}=9.82 \mathrm{~m} / \mathrm{s}^{2}
$$

While stopping the acceleration is

$$
\bar{a}=\frac{\Delta v}{\Delta t}=\frac{v_{f}-v_{i}}{t_{f}-t_{i}}=\frac{0 \mathrm{~m} / \mathrm{s}-11.0 \mathrm{~m} / \mathrm{s}}{0.131 \mathrm{~s}-0 \mathrm{~s}}=-84.0 \mathrm{~m} / \mathrm{s}^{2}
$$

The negative sign indicates that the egg is slowing down or decelerating.

[^0]
[^0]: ${ }^{\dagger}$ Problem from Essential University Physics, Wolfson

