Chapter 1 Problem 38^{\dagger}

Given

radius of earth $=6.37 \times 10^{6} \mathrm{~m}$
radius of sun $=6.96 \times 10^{8} \mathrm{~m}$

Solution

How many earths would fit within the sun?
Divide the volume of the sun by the volume of the earth.

$$
\begin{aligned}
& \frac{V_{\text {sun }}}{V_{\text {earth }}}=\frac{\frac{4}{3} \pi r_{\text {sun }}^{3}}{\frac{4}{3} \pi r_{\text {earth }}^{3}}=\frac{r_{\text {sun }}^{3}}{r_{\text {earth }}^{3}}=\frac{\left(6.96 \times 10^{8} \mathrm{~m}\right)^{3}}{\left(6.37 \times 10^{6} \mathrm{~m}\right)^{3}} \\
& 1.30 \times 10^{6} \text { earths }
\end{aligned}
$$

This value is assuming that we are pulverizing the earths so there is no empty space due to packing together of spheres.

[^0]
[^0]: †Problem from Essential University Physics, Wolfson

