Chapter 14 Problem $70{ }^{\dagger}$

Given

$f=22 H z$
$v=343 \mathrm{~m} / \mathrm{s}$

Solution

a) Find the length of pipe needed for a standing wave with frequency of 22 Hz when the pipe has one open end.

When the pipe has one closed end and one open end, the fundamental wavelength is 4 times the length of the pipe.

$$
\begin{equation*}
\lambda=4 L \tag{1}
\end{equation*}
$$

The relationship between wavelength and frequency is

$$
\begin{equation*}
v=f \lambda \tag{2}
\end{equation*}
$$

Combining Equations 1 and 2 and solving for length gives

$$
L=\frac{\lambda}{4}=\frac{v}{4 f}
$$

Substituting in the appropriate values gives

$$
L=\frac{(343 \mathrm{~m} / \mathrm{s})}{4(22 \mathrm{~Hz})}=3.90 \mathrm{~m}
$$

b) Find the length of pipe needed for a standing wave with frequency of 22 Hz when the pipe has two open ends.

The wavelength of the fundamental for a pipe with two open ends is two times the wavelength. Following the same development as above the length will be

$$
L=\frac{\lambda}{2}=\frac{v}{2 f}=\frac{(343 \mathrm{~m} / \mathrm{s})}{2(22 H z)}=7.80 \mathrm{~m}
$$

[^0]
[^0]: ${ }^{\dagger}$ Problem from Essential University Physics, Wolfson

