Chapter 14 Problem $67{ }^{\dagger}$

Given

$r_{1}=2.0 \mathrm{~m}$
$\beta_{1}=75 d B$
$\beta_{2}=65 d B$

Solution

Find the distance for a decibel level of 65 dB .
Assuming the sound spreads uniformly out into 3 dimensions of space, the intensity will drop off as $1 / r^{2}$. This happens because the initial power of the sound source is spread out over the surface of a sphere.

$$
P=4 \pi r^{2} I
$$

Assuming no absorption of power from the source to the observer, the intensity at any location is related to the power of the source.

$$
P=4 \pi r_{1}^{2} I_{1}=4 \pi r_{2}^{2} I_{2}
$$

Solving for the distance to the second intensity level gives

$$
r_{2}=\sqrt{\frac{4 \pi r_{1}^{2} I_{1}}{4 \pi I_{2}}}=\sqrt{\frac{r_{1}^{2} I_{1}}{I_{2}}}
$$

The intensity is related to the decibel level as follows.

$$
\beta=10 \log \left(\frac{I}{I_{0}}\right)
$$

Solving for the intensity gives

$$
I=I_{0} 10^{\beta / 10}
$$

The ratio of the two intensities is then

$$
\frac{I_{1}}{I_{2}}=\frac{I_{0} 10^{\beta_{1} / 10}}{I_{0} 10^{\beta_{2} / 10}}=\frac{10^{\beta_{1} / 10}}{10^{\beta_{2} / 10}}=10^{\left(\beta_{1}-\beta_{2}\right) / 10}
$$

The distance to the second intensity level is then

$$
r_{2}=\sqrt{r_{1}^{2} 10^{\left(\beta_{1}-\beta_{2}\right) / 10}}
$$

Substituting in the appropriate values gives

$$
r_{2}=\sqrt{(2.0 m)^{2} 10^{(75 d B-65 d B) / 10}}=6.32 \mathrm{~m}
$$

[^0]
[^0]: ${ }^{\dagger}$ Problem from Essential University Physics, Wolfson

