Chapter 14 Problem $28{ }^{\dagger}$

Given

$A=1.2 \mathrm{~cm}=1.2 \times 10^{-2} \mathrm{~m}$
$f=44 \mathrm{~Hz}$
$F=21 \mathrm{~N}$
$m=15 \mathrm{~g} / \mathrm{m}=0.015 \mathrm{~kg} / \mathrm{m}$

Solution

a) Find the wave speed.

For a string under tension the velocity of a wave is

$$
v=\sqrt{\frac{F}{\mu}}
$$

Substituting in the appropriate values gives

$$
v=\sqrt{\frac{21 \mathrm{~N}}{0.015 \mathrm{~kg} / \mathrm{m}}}=37.4 \mathrm{~m} / \mathrm{s}
$$

b) Find the maximum speed of a point on the string.

The velocity of a point on the string is given by the first derivative of the displacement function.

$$
u=\frac{d y}{d t}=\frac{d(A \cos (k x-\omega t))}{d t}=A \omega \sin (k x-\omega t)
$$

The maximum velocity is then

$$
u_{\max }=A \omega
$$

The angular velocity can be found from the frequency.

$$
\omega=2 \pi f=2 \pi(44 H z)=276 s^{-1}
$$

The maximum velocity is then

$$
u_{\max }=\left(1.2 \times 10^{-2} \mathrm{~m}\right)\left(276 \mathrm{~s}^{-1}\right)=3.31 \mathrm{~m} / \mathrm{s}
$$

[^0]
[^0]: ${ }^{\dagger}$ Problem from Essential University Physics, Wolfson

