## Chapter 13 Problem $37{ }^{\dagger}$

## Given

$b / 2 m=2.8 s^{-1}$

## Solution

Find the time for the amplitude to drop to half its value.
Equation 13-17 has an amplitude which depends on time

$$
A(t)=A_{0} e^{-b t / 2 m}
$$

where $A_{0}$ is the original amplitude. If the amplitude drops to half its original value then

$$
0.5=\frac{A(t)}{A_{0}}=e^{-b t / 2 m}
$$

Solving for $t$ gives

$$
\begin{aligned}
& \ln (0.5)=\frac{-b t}{2 m} \\
& t=\frac{\ln (0.5)}{-\left(\frac{b}{2 m}\right)}=\frac{\ln (0.5)}{-\left(2.8 s^{-1}\right)}=0.248 \mathrm{~s}
\end{aligned}
$$

[^0]
[^0]:    ${ }^{\dagger}$ Problem from Essential University Physics, Wolfson

