Chapter 11 Problem $43{ }^{\dagger}$

Given

$r=19 \mathrm{~cm}=0.19 \mathrm{~m}$
$I_{f}=0.12 \mathrm{~kg} \cdot \mathrm{~m}^{2}$
$\omega_{f}=5.6 \mathrm{rpm}$
$m_{b}=140 \mathrm{~g}=0.140 \mathrm{~kg}$
$v_{b}=1.1 \mathrm{~m} / \mathrm{s}$

Solution

Find the rotation rate after the bird lands on the feeder.
First convert the angular velocity of the feeder into radians per second.

$$
\omega_{f}=5.6 \mathrm{rev} / \mathrm{min}\left(\frac{1 \mathrm{~min}}{60 \mathrm{~s}}\right)\left(\frac{2 \pi \mathrm{rad}}{1 \mathrm{rev}}\right)=0.586 \mathrm{rad} / \mathrm{s}
$$

Just before the bird lands on the feeder, the moment of inertia of the bird is essentially that of a point mass at a distance r from the center of the feeder. Therefore,

$$
I_{b}=m_{b} r^{2}
$$

The angular velocity of the bird just before landing is negative because it is a clockwise rotation relative to the center of the feeder and has a value of

$$
\omega_{b}=-\frac{v_{b}}{r}
$$

The angular momentum of the bird just before landing is then

$$
L_{b}=I_{b} \omega_{b}=-m_{b} r^{2} \frac{v_{b}}{r}=-m_{b} r v_{b}
$$

The angular momentum of the feeder before the bird lands is

$$
L_{f}=I_{f} \omega_{f}
$$

After the bird lands, the moment of inertia of bird/feeder combination is

$$
I_{T}=I_{b}+I_{f}=m_{b} r^{2}+I_{f}
$$

and the angular momentum after the landing is

$$
L_{T}=I_{T} \omega_{T}=\left(m_{b} r^{2}+I_{f}\right) \omega_{T}
$$

[^0]Using conservation of angular momentum we have

$$
\begin{aligned}
& L_{b}+L_{f}=L_{T} \\
& -m_{b} r v_{b}+I_{f} \omega_{f}=\left(m_{b} r^{2}+I_{f}\right) \omega_{T}
\end{aligned}
$$

Solving for the angular velocity after the landing gives

$$
\omega_{T}=\frac{-m_{b} r v_{b}+I_{f} \omega_{f}}{m_{b} r^{2}+I_{f}}
$$

Substitute in the provided values

$$
\begin{aligned}
& \omega_{T}=\frac{-(0.140 \mathrm{~kg})(0.19 \mathrm{~m})(1.1 \mathrm{~m} / \mathrm{s})+\left(0.12 \mathrm{~kg} \cdot \mathrm{~m}^{2}\right)(0.586 \mathrm{rad} / \mathrm{s})}{(0.140 \mathrm{~kg})(0.19 \mathrm{~m})^{2}+0.12 \mathrm{~kg} \cdot \mathrm{~m}^{2}} \\
& \omega_{T}=\frac{-0.0293 \mathrm{~kg} \cdot \mathrm{~m}^{2} / \mathrm{s}+0.0703 \mathrm{~kg} \cdot \mathrm{~m}^{2} / \mathrm{s}}{0.125 \mathrm{~kg} \cdot \mathrm{~m}^{2}}=0.328 \mathrm{rad} / \mathrm{s}
\end{aligned}
$$

Converting this into revolutions per minutes gives

$$
\omega_{T}=0.328 \mathrm{rad} / \mathrm{s}\left(\frac{1 \mathrm{rev}}{2 \pi \mathrm{rad}}\right)\left(\frac{60 \mathrm{~s}}{1 \mathrm{~min}}\right)=3.1 \mathrm{rpm}
$$

[^0]: ${ }^{\dagger}$ Problem from Essential University Physics, Wolfson

