Chapter 5 Problem $82{ }^{\dagger}$

Given

$m=1.0 \mathrm{~kg}$
$\vec{a}=-20 \hat{i} \mathrm{~m} / \mathrm{s}^{2}$

Solution

What are \vec{F}_{A} and \vec{F}_{B}.
By Newton's 2nd law

$$
\vec{F}_{n e t}=m \vec{a}
$$

Substituting in the three forces acting on the system gives

$$
\vec{F}_{A}+\vec{F}_{B}+\vec{W}=m \vec{a} \quad E q(1)
$$

Resolve each of the forces and acceleration into the coordinate system provided in the diagram.

$$
\begin{aligned}
& \vec{F}_{A}=F_{A} \cos \left(60^{\circ}\right) \hat{i}+F_{A} \sin \left(60^{\circ}\right) \hat{j} \\
& \vec{F}_{B}=-F_{B} \cos \left(30^{\circ}\right) \hat{i}+F_{B} \sin \left(30^{\circ}\right) \hat{j} \\
& \vec{W}=-m g \hat{j} \\
& \vec{a}=-a \hat{i}
\end{aligned}
$$

where $a=20 \mathrm{~m} / \mathrm{s}^{2}$. Inserting these values into equation (1) gives

$$
F_{A} \cos \left(60^{\circ}\right) \hat{i}+F_{A} \sin \left(60^{\circ}\right) \hat{j}-F_{B} \cos \left(30^{\circ}\right) \hat{i}+F_{B} \sin \left(30^{\circ}\right) \hat{j}-m g \hat{j}=-m a \hat{i}
$$

The x -component of this equation is

$$
\begin{equation*}
F_{A} \cos \left(60^{\circ}\right)-F_{B} \cos \left(30^{\circ}\right)=-m a \tag{2}
\end{equation*}
$$

The y-component of this equation is

$$
\begin{equation*}
F_{A} \sin \left(60^{\circ}\right)+F_{B} \sin \left(30^{\circ}\right)-m g=0 \tag{3}
\end{equation*}
$$

We now have two equations with two unknowns. Take equation (2) and solve for F_{A}.

$$
\begin{align*}
& F_{A} \cos \left(60^{\circ}\right)=-m a+F_{B} \cos \left(30^{\circ}\right) \\
& F_{A}=\frac{-m a+F_{B} \cos \left(30^{\circ}\right)}{\cos \left(60^{\circ}\right)} \tag{4}
\end{align*}
$$

Substitute this result into equation (3)

$$
\left(\frac{-m a+F_{B} \cos \left(30^{\circ}\right)}{\cos \left(60^{\circ}\right)}\right) \sin \left(60^{\circ}\right)+F_{B} \sin \left(30^{\circ}\right)-m g=0
$$

[^0]Now solve for F_{B}.

$$
\begin{aligned}
& \left(-m a+F_{B} \cos \left(30^{\circ}\right)\right) \tan \left(60^{\circ}\right)+F_{B} \sin \left(30^{\circ}\right)-m g=0 \\
& -m a \tan \left(60^{\circ}\right)+F_{B} \cos \left(30^{\circ}\right) \tan \left(60^{\circ}\right)+F_{B} \sin \left(30^{\circ}\right)-m g=0 \\
& F_{B} \cos \left(30^{\circ}\right) \tan \left(60^{\circ}\right)+F_{B} \sin \left(30^{\circ}\right)=m g+m a \tan \left(60^{\circ}\right) \\
& F_{B}\left(\cos \left(30^{\circ}\right) \tan \left(60^{\circ}\right)+\sin \left(30^{\circ}\right)\right)=m\left(g+a \tan \left(60^{\circ}\right)\right) \\
& F_{B}=\frac{m\left(g+a \tan \left(60^{\circ}\right)\right)}{\cos \left(30^{\circ}\right) \tan \left(60^{\circ}\right)+\sin \left(30^{\circ}\right)}
\end{aligned}
$$

Substituting in the appropriate values gives

$$
\begin{aligned}
& F_{B}=\frac{(1.0 \mathrm{~kg})\left(9.80 \mathrm{~m} / \mathrm{s}^{2}+\left(20 \mathrm{~m} / \mathrm{s}^{2}\right) \tan \left(60^{\circ}\right)\right)}{\cos \left(30^{\circ}\right) \tan \left(60^{\circ}\right)+\sin \left(30^{\circ}\right)}=\frac{44.4}{2.0} \mathrm{~N} \\
& F_{B}=22.2 \mathrm{~N}
\end{aligned}
$$

Use this value and substitute into $\mathrm{Eq}(4)$ to solve for F_{A}

$$
\begin{aligned}
& F_{A}=\frac{-(1.0 \mathrm{~kg})\left(20.0 \mathrm{~m} / \mathrm{s}^{2}\right)+(22.2 \mathrm{~N}) \cos \left(30^{\circ}\right)}{\cos \left(60^{\circ}\right)} \\
& F_{A}=\frac{-0.774 \mathrm{~N}}{0.50}=-1.55 \mathrm{~N}
\end{aligned}
$$

This means F_{A} is pointing in the opposite direction from the diagram (into the 3rd quadrant.)

[^0]: ${ }^{\dagger}$ Problem from University Physics by Ling, Sanny and Moebs (OpenStax)

