Chapter 5 Problem 54^{\dagger}

Given

$m_{c}=550 \mathrm{~kg}$
$m_{t}=2200 \mathrm{~kg}$
$a_{t}=10 \mathrm{~m} / \mathrm{s}^{2}$

Solution

Find the magnitude of the car's acceleration.
The force the truck exerts on the car is $\vec{F}_{t c}$. By Newton's 2nd law the effect of this force on the car is

$$
\vec{F}_{t c}=m_{c} \vec{a}_{c} \quad E q .1
$$

At the same time the car exerts a force on the truck of $\vec{F}_{c t}$. By Newton's 2nd law the effect of this force on the truck is

$$
\vec{F}_{c t}=m_{t} \vec{a}_{t} \quad E q .2
$$

By Newton's 3rd law the two forces described above are equal and opposite.

$$
\vec{F}_{c t}=-\vec{F}_{t c}
$$

Substitute in equations 1 and 2 gives

$$
m_{t} \vec{a}_{t}=-m_{c} \vec{a}_{c}
$$

Solving for the acceleration of the car gives

$$
\vec{a}_{c}=-\frac{m_{t} \vec{a}_{t}}{m_{c}}
$$

If the truck accelerates to the right, then the car accelerates to the left. Since we are only interested in the magnitude of the acceleration, we have

$$
\begin{aligned}
& a_{c}=\frac{m_{t} a_{t}}{m_{c}}=\frac{(2200 \mathrm{~kg})\left(10 \mathrm{~m} / \mathrm{s}^{2}\right)}{550 \mathrm{~kg}} \\
& a_{c}=40 \mathrm{~m} / \mathrm{s}^{2}
\end{aligned}
$$

