Chapter 4 Problem $91{ }^{\dagger}$

Given

$\vec{v}(t)=250.0 \hat{i} \mathrm{~m} / \mathrm{s}$
$\vec{a}(t)=(3.0 \hat{i}+4.0 \hat{j}) \mathrm{m} / \mathrm{s}^{2}$

Solution

What is the velocity $5 s$ after the rockets fire?
Although the acceleration is a vector, it is constant. Therefore, the vector form of the kinematic equations apply. Using the first kinematic equation gives

$$
\begin{aligned}
\vec{v}_{f} & =\vec{v}_{0}+\vec{a} t \\
\vec{v}_{f} & =(250.0 \hat{i} \mathrm{~m} / \mathrm{s})+\left(\{3.0 \hat{i}+4.0 \hat{j}\} \mathrm{m} / \mathrm{s}^{2}\right)(5.0 \mathrm{~s}) \\
\vec{v}_{f} & =(250.0 \hat{i} \mathrm{~m} / \mathrm{s})+\{15.0 \hat{i}+20.0 \hat{j}\} \mathrm{m} / \mathrm{s} \\
\vec{v}_{f} & =\{265.0 \hat{i}+20.0 \hat{j}\} \mathrm{m} / \mathrm{s}
\end{aligned}
$$

