Chapter 4 Problem $63{ }^{\dagger}$

Given

$r=8.00 m$

Solution

How many revolutions per minute are needed in order for the centripetal acceleration to equal that of earth's gravity.

The value of centripetal acceleration is given by

$$
a_{c}=\frac{v^{2}}{r}
$$

Solving for velocity gives

$$
\begin{aligned}
& v^{2}=a_{c} r \\
& v=\sqrt{a_{c} r}=\sqrt{\left(9.80 \mathrm{~m} / \mathrm{s}^{2}\right)(8.00 \mathrm{~m})}=8.85 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

Average velocity is defined as

$$
v_{a v g}=\frac{\Delta x}{\Delta t}
$$

Solving for time gives

$$
\Delta t=\frac{\Delta x}{v_{a v g}}
$$

In one revolution $\Delta x=2 \pi r$, so the time for one revolution is

$$
\begin{aligned}
\Delta t & =\frac{2 \pi r}{v_{\text {avg }}}=\frac{2 \pi(8.00 \mathrm{~m})}{8.85 \mathrm{~m} / \mathrm{s}} \\
\Delta t & =5.68 \mathrm{~s}
\end{aligned}
$$

Convert this time into minutes

$$
\Delta t=5.68 \mathrm{~s}\left(\frac{1 \mathrm{~min}}{60 \mathrm{~s}}\right)=0.0947 \mathrm{~min}
$$

If 1 rev $=0.0947 \mathrm{~min}$, then dividing both sides by 0.0947 min will give the number of revolutions per minute

$$
\text { rotation }=\frac{1 \mathrm{rev}}{0.0947 \mathrm{~min}}=10.6 \mathrm{rev} / \mathrm{min}
$$

[^0]
[^0]: ${ }^{\dagger}$ Problem from University Physics by Ling, Sanny and Moebs (OpenStax)

