Chapter 4 Problem $46{ }^{\dagger}$

Given

$v_{0}=60 \mathrm{~km} / \mathrm{h}$
$\theta=-30^{\circ}$
$y_{f}=-100 m$
$x_{f}=60 m$
$a_{y}=-g=-9.80 \mathrm{~m} / \mathrm{s}^{2}$

Solution

Does the agent clear the gorge?
First convert the speed into m / s and break into scalar components using unit vectors.

$$
\begin{aligned}
& v_{0}=\frac{60 \mathrm{~km}}{1 \mathrm{hr}}\left(\frac{1000 \mathrm{~m}}{1 \mathrm{~km}}\right)\left(\frac{(1 \mathrm{hr})}{3600 \mathrm{~s}}\right)=16.7 \mathrm{~m} / \mathrm{s} \\
& \vec{v}_{0}=v_{0} \cos \theta \hat{i}+v_{0} \sin \theta \hat{j} \\
& \vec{v}_{0}=(16.7 \mathrm{~m} / \mathrm{s}) \cos \left(-30^{\circ}\right) \hat{i}+(16.7 \mathrm{~m} / \mathrm{s}) \sin \left(-30^{\circ}\right) \hat{j}=\{14.5 \hat{i}-8.35 \hat{j}\} \mathrm{m} / \mathrm{s}
\end{aligned}
$$

From the initial values, the position vector is

$$
\vec{r}=\vec{r}_{0}+\vec{v}_{0} t+\frac{1}{2} \vec{a} t^{2}
$$

Set the coordinate system at the point where the agent begins the jump over the gorge. Therefore, $\vec{r}_{0}=0$.

$$
\vec{r}=0+\left\{v_{x 0} \hat{i}+v_{y 0} \hat{j}\right\} t+\frac{1}{2}\{-g \hat{j}\} t^{2}
$$

Regrouping gives

$$
\vec{r}=\left\{\left[\left(v_{x 0} t\right] \hat{i}+\left[v_{y 0} t-\frac{1}{2} g t^{2}\right] \hat{j}\right\}\right.
$$

Since $\vec{r}=x_{f} \hat{i}+y_{f} \hat{j}$, we get an equation for the x -direction and an equation for the y -direction.

$$
\begin{aligned}
& x_{f}=v_{x 0} t \\
& y_{f}=v_{y 0} t-\frac{1}{2} g t^{2}
\end{aligned}
$$

Use the first equation to find the time needed to clear the width of the gorge.

$$
t=\frac{x_{f}}{v_{x 0}}=\frac{60 \mathrm{~m}}{14.5 \mathrm{~m} / \mathrm{s}}=4.14 \mathrm{~s}
$$

[^0]During this time the vertical position is

$$
y_{f}=(-8.35 \mathrm{~m} / \mathrm{s})(4.14 \mathrm{~s})-\frac{1}{2}\left(9.80 \mathrm{~m} / \mathrm{s}^{2}\right)(4.14 \mathrm{~s})^{2}=-34.6 m-84.0 m=-118.6 m
$$

Since the agent drops 119 m by the time he moved 60 m horizontally, he is below the snow on the other side, which is 100 m below the ledge from which he left.

[^0]: ${ }^{\dagger}$ Problem from University Physics by Ling, Sanny and Moebs (OpenStax)

