Chapter 4 Problem $31{ }^{\dagger}$

Given

$\vec{r}(t)=\cos (1.0 t) \hat{i}+\sin (1.0 t) \hat{j}+t \hat{k}$

Solution

a) Find the velocity vector.

Velocity is defined as the time derivative of the position function. Therefore,

$$
\begin{aligned}
\vec{v} & =\frac{d \vec{r}}{d t}=\frac{d}{d t}(\cos (1.0 t) \hat{i}+\sin (1.0 t) \hat{j}+t \hat{k}) \\
\vec{v} & =-\sin (1.0 t) \hat{i}+\cos (1.0 t) \hat{j}+1.0 \hat{k}
\end{aligned}
$$

b) Acceleration is defined as the time derivative of the velocity function. Therefore,

$$
\begin{aligned}
& \vec{a}=\frac{d \vec{v}}{d t}=\frac{d}{d t}(-\sin (1.0 t) \hat{i}+\cos (1.0 t) \hat{j}+1.0 \hat{k}) \\
& \vec{a}=-\cos (1.0 t) \hat{i}-\sin (1.0 t) \hat{j}
\end{aligned}
$$

