Chapter 4 Problem 26^{\dagger}

Given

$\vec{r}=\left(3.0 t^{2} \hat{i}+5.0 \hat{j}-6.0 t \hat{k}\right) m$

Solution

a) Find the velocity and acceleration as functions of time.

Velocity is defined as the time derivative of the position function. Therefore,

$$
\begin{aligned}
\vec{v} & =\frac{d \vec{r}}{d t}=\frac{d}{d t}\left(3.0 t^{2} \hat{i}+5.0 \hat{j}-6.0 t \hat{k}\right) \mathrm{m} \\
\vec{v} & =\{6.0 t \hat{i}-6.0 \hat{k}\} \mathrm{m} / \mathrm{s}
\end{aligned}
$$

Acceleration is defined as the time derivative of the velocity function. Therefore,

$$
\begin{aligned}
\vec{a} & =\frac{d \vec{v}}{d t}=\frac{d}{d t}(6.0 t \hat{i}-6.0 \hat{k}) \mathrm{m} / \mathrm{s} \\
\vec{a} & =\{6.0 \hat{i}\} \mathrm{m} / \mathrm{s}^{2}
\end{aligned}
$$

b) What are its velocity and acceleration at time $t=0 \mathrm{~s}$.

Using the functions derived above, the velocity and acceleration at $t=0 \mathrm{~s}$ is

$$
\begin{aligned}
& \vec{v}(0 \mathrm{~s})=\{6.0(0 \mathrm{~s}) \hat{i}-6.0 \hat{k}\} \mathrm{m} / \mathrm{s}=-6.0 \hat{k} \mathrm{~m} / \mathrm{s} \\
& \vec{a}(0 \mathrm{~s})=\{6.0 \hat{i}\} \mathrm{m} / \mathrm{s}^{2}
\end{aligned}
$$

[^0]
[^0]: ${ }^{\dagger}$ Problem from University Physics by Ling, Sanny and Moebs (OpenStax)

