Chapter 3 Problem 98^{\dagger}

Given

$a=5.0 \mathrm{~m} / \mathrm{s}^{2}$
$\Delta x=10.0 \mathrm{~km}=10,000 \mathrm{~m}$
$t=30.0 \mathrm{~s}$

Solution

What are the initial and final velocities of the airplane?
Since the airplane has a constant acceleration, we can use the kinematic equations. Since we know the time and the acceleration, we can use the first kinematic equation.

$$
\begin{align*}
& v_{f}=v_{0}+a t \\
& v_{f}=v_{0}+\left(5.0 \mathrm{~m} / \mathrm{s}^{2}\right)(30.0 \mathrm{~s})=v_{0}+150.0 \mathrm{~m} / \mathrm{s} \tag{eq.1}
\end{align*}
$$

Now use the third kinematic equation and substitute in the know values

$$
\begin{aligned}
& x-x_{0}=v_{0} t+\frac{1}{2} a t^{2} \\
& 10,000 m=v_{0}(30.0 \mathrm{~s})+\frac{1}{2}\left(5.0 \mathrm{~m} / \mathrm{s}^{2}\right)(30.0 \mathrm{~s})^{2} \\
& 10,000 m=v_{0}(30.0 \mathrm{~s})+2,250 \mathrm{~m}
\end{aligned}
$$

With algebra we get

$$
\begin{aligned}
& 7,750 \mathrm{~m}=v_{0}(30.0 \mathrm{~s}) \\
& v_{0}=\frac{7,750 \mathrm{~m}}{30.0 \mathrm{~s}}=258.3 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

Substitute this value into eq. 1 and the final velocity is

$$
\begin{aligned}
& v_{f}=v_{0}+150.0 \mathrm{~m} / \mathrm{s} \\
& v_{f}=258.3 \mathrm{~m} / \mathrm{s}+150.0 \mathrm{~m} / \mathrm{s}=408.3 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

The answers are only good to 2 sig. figs. Therefore, the initial velocity is $260 \mathrm{~m} / \mathrm{s}$ and the final velocity is $410 \mathrm{~m} / \mathrm{s}$.

[^0]
[^0]: ${ }^{\dagger}$ Problem from University Physics by Ling, Sanny and Moebs (OpenStax)

