Chapter 3 Problem $78{ }^{\dagger}$

Given

$$
a(t)=p t^{2}-q t^{3}
$$

Solution

a) What is the velocity as a function of time assuming initial velocity and initial position are both zero? The definition of acceleration is

$$
a=\frac{d v}{d t}
$$

Separating the differentials gives

$$
d v=a d t
$$

Substituting in the function for acceleration and setting up a definite integral on both sides gives

$$
\int_{0}^{v} d v=\int_{0}^{t} a \cdot d t=\int_{0}^{t}\left(p t^{2}-q t^{3}\right) d t
$$

Completing the integration gives

$$
\begin{aligned}
& \left.v\right|_{0} ^{v}=\left(\frac{1}{3} p t^{3}-\left.\frac{1}{4} q t^{4}\right|_{0} ^{t}\right. \\
& v-0=\left(\frac{1}{3} p t^{3}-\frac{1}{4} q t^{4}\right)-(0-0)
\end{aligned}
$$

The velocity as a function of time is, therefore,

$$
v(t)=\frac{1}{3} p t^{3}-\frac{1}{4} q t^{4}
$$

b) What is the position as a function of time assuming initial velocity and initial position are both zero?

The definition of velocity is

$$
v=\frac{d x}{d t}
$$

Separating the differentials gives

$$
d x=v d t
$$

Substituting in the function for velocity and setting up a definite integral on both sides gives

$$
\int_{0}^{x} d x=\int_{0}^{t} v \cdot d t=\int_{0}^{t}\left(\frac{1}{3} p t^{3}-\frac{1}{4} q t^{4}\right) d t
$$

Completing the integration gives

$$
\begin{aligned}
& \left.x\right|_{0} ^{x}=\left(\frac{1}{12} p t^{4}-\left.\frac{1}{20} q t^{5}\right|_{0} ^{t}\right. \\
& x-0=\left(\frac{1}{12} p t^{4}-\frac{1}{20} q t^{5}\right)-(0-0)
\end{aligned}
$$

The position as a function of time is, therefore,

$$
x(t)=\frac{1}{12} p t^{4}-\frac{1}{20} q t^{5}
$$

