Chapter 3 Problem 61^{\dagger}

Given

$v_{0}=0.600 \mathrm{~m} / \mathrm{s}$
$v_{f}=0 \mathrm{~m} / \mathrm{s}$
$\Delta x=2.00 \mathrm{~mm}=2.00 \times 10^{-3} \mathrm{~m}$

Solution

a) Find the acceleration of the woodpecker's head.

Since change in velocity and position are provided, the fourth kinematic equation is useful for finding acceleration.

$$
v_{f}^{2}-v_{0}^{2}=2 a \Delta x
$$

Solving for acceleration gives

$$
a=\frac{v_{f}^{2}-v_{0}^{2}}{2 \Delta x}=\frac{(0 \mathrm{~m} / \mathrm{s})^{2}-(0.600 \mathrm{~m} / \mathrm{s})^{2}}{2\left(2.00 \times 10^{-3} \mathrm{~m}\right)}=-90.0 \mathrm{~m} / \mathrm{s}^{2}
$$

This corresponds to

$$
a=-90.0 \mathrm{~m} / \mathrm{s}^{2}\left(\frac{1 \mathrm{~g}}{9.80 \mathrm{~m} / \mathrm{s}^{2}}\right)=-9.18 \mathrm{~g}^{\prime} \mathrm{s}
$$

b) Find the stopping time.

Since we now know the acceleration, we can calculate the stopping time with the first kinematic equation.

$$
v_{f}=v_{0}+a t
$$

Solving for t gives

$$
t=\frac{v_{f}-v_{0}}{a}=\frac{0 \mathrm{~m} / \mathrm{s}-0.600 \mathrm{~m} / \mathrm{s}}{-90.0 \mathrm{~m} / \mathrm{s}^{2}}=6.67 \times 10^{-3} \mathrm{~s}
$$

c) Since the tendons around the brain stretch during impact, what is the acceleration of the brain?

The stretch of tendons increases the stopping distance of the brain to 4.50 mm . Use this value in the equation from part a) and find the new acceleration is

$$
a=\frac{v_{f}^{2}-v_{0}^{2}}{2 \Delta x}=\frac{(0 \mathrm{~m} / \mathrm{s})^{2}-(0.600 \mathrm{~m} / \mathrm{s})^{2}}{2\left(4.50 \times 10^{-3} \mathrm{~m}\right)}=-40.0 \mathrm{~m} / \mathrm{s}^{2}
$$

In g's this is

$$
a=-40.0 \mathrm{~m} / \mathrm{s}^{2}\left(\frac{1 \mathrm{~g}}{9.80 \mathrm{~m} / \mathrm{s}^{2}}\right)=-4.08 \mathrm{~g}^{\prime} \mathrm{s}
$$

