Chapter 3 Problem 56^{\dagger}

Given

$v_{0}=8.00 \mathrm{~m} / \mathrm{s}$
$t_{0}=0 \mathrm{~s}$
$v_{f}=40.0 \mathrm{~m} / \mathrm{s}$
$t_{f}=3.33 \times 10^{-2} s$

Solution

What is the distance over which the puck accelerates?
Since change in velocity and time are provided, the first kinematic equation is useful for finding acceleration.

$$
v_{f}=v_{0}+a t
$$

Solving for acceleration gives

$$
a=\frac{v_{f}-v_{0}}{t}=\frac{40.0 \mathrm{~m} / \mathrm{s}-8.00 \mathrm{~m} / \mathrm{s}}{3.33 \times 10^{-2} \mathrm{~s}}=961 \mathrm{~m} / \mathrm{s}^{2}
$$

Since the given values are good to 3 sig. figs., I will give my answers good to 3 sig. figs.
Now that we have the velocity, we can use the third kinematic equation that relates position to time.

$$
\begin{aligned}
& \Delta x=v_{0} t+\frac{1}{2} a t^{2}=(8.00 \mathrm{~m} / \mathrm{s})\left(3.33 \times 10^{-2} \mathrm{~s}\right)+\frac{1}{2}\left(961 \mathrm{~m} / \mathrm{s}^{2}\right)\left(3.33 \times 10^{-2} \mathrm{~s}\right)^{2} \\
& \Delta x=0.2664 \mathrm{~m}+0.5328 \mathrm{~m}=0.7992 \mathrm{~m}
\end{aligned}
$$

To three significant digits, the distance is 0.799 m

[^0]
[^0]: ${ }^{\dagger}$ Problem from University Physics by Ling, Sanny and Moebs (OpenStax)

