Chapter 3 Problem 38^{\dagger}

Given

$v_{0}=0 \mathrm{~m} / \mathrm{s}$
$t_{0}=0 \mathrm{~s}$
$v_{1}=282 \mathrm{~m} / \mathrm{s}$
$t_{1}=5.00 \mathrm{~s}$
$v_{2}=0 \mathrm{~m} / \mathrm{s}$
$t_{2}=6.40 \mathrm{~s}$
(Notice this time is 1.4 s more than t_{1}.)

Solution

a) Find the acceleration as the sled is increasing in velocity.

The average acceleration is the change in velocity divided by the change in time.

$$
\begin{aligned}
& a_{a v g}=\frac{v_{1}-v_{0}}{t_{1}-t_{0}}=\frac{282 \mathrm{~m} / \mathrm{s}-0 \mathrm{~m} / \mathrm{s}}{5.00 \mathrm{~s}-0 \mathrm{~s}} \\
& a_{\text {avg }}=56.4 \mathrm{~m} / \mathrm{s}^{2}
\end{aligned}
$$

Converting this into g's gives

$$
a_{a v g}=56.4 \mathrm{~m} / \mathrm{s}\left(\frac{1 g^{\prime} s}{9.80 \mathrm{~m} / \mathrm{s}^{2}}\right)=5.76 \mathrm{~g}^{\prime} \mathrm{s}
$$

b) Find the acceleration as the sled is decreasing in velocity.

The average acceleration is the change in velocity divided by the change in time.

$$
\begin{aligned}
& a_{\text {avg }}=\frac{v_{2}-v_{1}}{t_{2}-t_{1}}=\frac{0 \mathrm{~m} / \mathrm{s}-282 \mathrm{~m} / \mathrm{s}}{6.40 \mathrm{~s}-5.00 \mathrm{~s}} \\
& a_{\text {avg }}=201.4 \mathrm{~m} / \mathrm{s}^{2}
\end{aligned}
$$

Converting this into g's gives

$$
a_{a v g}=-201.4 \mathrm{~m} / \mathrm{s}\left(\frac{1 g^{\prime} s}{9.80 \mathrm{~m} / \mathrm{s}^{2}}\right)=-20.6 g^{\prime} \mathrm{s}
$$

[^0]
[^0]: ${ }^{\dagger}$ Problem from University Physics by Ling, Sanny and Moebs (OpenStax)

