Chapter 3 Problem 35^{\dagger}

Given

$x(t)=10 t-2 t^{2} m$

Solution

a) Find the instantaneous velocity at $t=2 \mathrm{~s}$ and $t=3 \mathrm{~s}$.

Instantaneious velocity is found by taking the derivative of the position function.

$$
v(t)=\frac{d x}{d t}=\frac{d}{d t}\left(10 t-2 t^{2}\right)=10-4 t \mathrm{~m} / \mathrm{s}
$$

Evaluating the velocity function at $t=2 s$ gives

$$
v(2 s)=10-4(2)=2 \mathrm{~m} / \mathrm{s}
$$

Evaluating the velocity function at $t=3 \mathrm{~s}$ gives

$$
v(3 s)=10-4(3)=-2 \mathrm{~m} / \mathrm{s}
$$

b) Find the instanteous speed at the same times.

The speed is just the magnitude of the velocity. Therefore,

$$
\begin{aligned}
& s(2 s)=|v(2 s)|=|2 s|=2 \mathrm{~m} / \mathrm{s} \\
& s(3 s)=|v(3 s)|=|-2 s|=2 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

c) What is the average velocity between $t=2 \mathrm{~s}$ and $t=3 \mathrm{~s}$.

Average velocity is change in position divided by change in time.
First find the positions at $t=2 \mathrm{~s}$ at $t=3 \mathrm{~s}$.

$$
\begin{aligned}
& x(2 s)=10(2)-2(2)^{2}=12 m \\
& x(3 s)=10(3)-2(3)^{2}=12 m
\end{aligned}
$$

Average velocity is

$$
\vec{v}_{a v g}=\frac{x_{2}-x_{1}}{t_{2}-t_{1}}=\frac{12 \mathrm{~m} / \mathrm{s}-12 \mathrm{~m} / \mathrm{s}}{3 \mathrm{~s}-2 \mathrm{~s}}=0 \mathrm{~m} / \mathrm{s}
$$

