## Chapter 3 Problem $28^{\dagger}$



## Given

$\overrightarrow{d_{1}}=8.0 \mathrm{~km}$ east
$t_{1}=20 \mathrm{~min}$
$\overrightarrow{d_{2}}=3.2 \mathrm{~km}$ west or $d_{2}=-3.2 \mathrm{~km}$
$t_{2}=8.0 \mathrm{~min}$
$\overrightarrow{d_{3}}=16.0 \mathrm{~km}$ east
$t_{3}=40 \mathrm{~min}$

## Solution

a) Find the displacement of the cyclist.

Displacement is the sum of all the distances traveled, taking into account the directions east $(+)$ and west (-).

$$
\vec{d}=\vec{d}_{1}+\vec{d}_{2}+\vec{d}_{3}=8.0-3.2+16.0=20.8 \mathrm{~km}
$$

In meters, this is

$$
\vec{d}=20,800 \mathrm{~m}
$$

b) Find the average velocity.

The total time is

$$
t=t_{1}+t_{2}+t_{3}=20+8+40=68 \mathrm{~min}
$$

In seconds, this is

$$
t=68 \min \left(\frac{60 \mathrm{~s}}{1 \min }\right)=4080 \mathrm{~s}
$$

Since velocity is the time rate of change of displacement, the average velocity is then the change in position divided by the total time.

$$
\vec{v}_{a v g}=\frac{\vec{d}}{t}=\frac{20,800 \mathrm{~m}}{4080 \mathrm{~s}}=5.1 \mathrm{~m} / \mathrm{s}
$$

[^0]
[^0]:    ${ }^{\dagger}$ Problem from University Physics by Ling, Sanny and Moebs (OpenStax)

