Chapter 2 Problem 84^{\dagger}

Given

$\vec{A}=-8.80 \hat{i}+15.00 \hat{j}$
$\vec{B}=13.20 \hat{i}-6.60 \hat{j}$
$\vec{A}-\vec{B}+3 \vec{C}=0$

Solution

Find the components of vector C.
Begin with the equation and solve for \vec{C}.

$$
\begin{aligned}
& 3 \vec{C}=-\vec{A}+\vec{B} \\
& \vec{C}=\frac{-\vec{A}+\vec{B}}{3}=\frac{-(-8.80 \hat{i}+15.00 \hat{j})+(13.20 \hat{i}-6.60 \hat{j})}{3} \\
& \vec{C}=\frac{8.80 \hat{i}-15.00 \hat{j}+13.20 \hat{i}-6.60 \hat{j}}{3}=\frac{22.00 \hat{i}-21.60 \hat{j}}{3}=7.33 \hat{i}-7.20 \hat{j}
\end{aligned}
$$

[^0]
[^0]: ${ }^{\dagger}$ Problem from University Physics by Ling, Sanny and Moebs (OpenStax)

