Chapter 2 Problem $80{ }^{\dagger}$

Given

$\vec{F}=\{98.0 \hat{i}+132.0 \hat{j}+32.0 \hat{k}\} N$

Solution

a) What is the magnitude of the pulling force?

The magnitude of a vector is given by

$$
F=\sqrt{\left(F_{x}\right)^{2}+\left(F_{y}\right)^{2}+\left(F_{z}\right)^{2}}=\sqrt{(98.0)^{2}+(132.0)^{2}+(32.0)^{2}}=167 \mathrm{~N}
$$

b) What angle does the leash make with respect to the vertical?

The easiest way to find this angle is to use the relationship between the Cartesian form of the dot product and the polar form of the dot product. This gives

$$
\vec{A} \cdot \vec{B}=\|\vec{A}\|\|\vec{B}\| \cos \theta=A_{x} B_{x}+A_{y} B_{y}+A_{z} B_{z}
$$

The angle is given by

$$
\theta=\cos ^{-1}\left(\frac{A_{x} B_{x}+A_{y} B_{y}+A_{z} B_{z}}{\|\vec{A}\|\|\vec{B}\|}\right)
$$

The angle between the leash and vertical can then be found by using this formula where $\vec{A}=\vec{F}$ and $\vec{B}=\hat{k}$.

$$
\begin{aligned}
& \theta=\cos ^{-1}\left(\frac{F_{x}(0)+F_{y}(0)+F_{z}(1)}{\|\vec{F}\|\|\hat{k}\|}\right) \\
& \theta=\cos ^{-1}\left(\frac{98.0(0)+132.0(0)+32.0(1)}{(167)(1)}\right) \\
& \theta=\cos ^{-1}\left(\frac{32.0}{167}\right)=\cos ^{-1}(0.1916)=79.0^{\circ}
\end{aligned}
$$

