Chapter 2 Problem 68^{\dagger}

Solution

a) Find the cross product between $\vec{A}=2.0 \hat{i}-4.0 \hat{j}+\hat{k}$ and $\vec{C}=3.0 \hat{i}+4.0 \hat{j}+10.0 \hat{k}$.

First set up the matrix, with the unit vectors on the top row, components of vector A on the second row and the components of vector C on the third row. Find the determinant using expansion by minors.

$$
\begin{aligned}
& \vec{A} \times \vec{C}=\left|\begin{array}{ccc}
\hat{i} & \hat{j} & \hat{k} \\
2.0 & -4.0 & 1.0 \\
3.0 & 4.0 & 10.0
\end{array}\right| \\
& \vec{A} \times \vec{C}=\hat{i}\left|\begin{array}{cc}
-4.0 & 1.0 \\
4.0 & 10.0
\end{array}\right|-\hat{j}\left|\begin{array}{cc}
2.0 & 1.0 \\
3.0 & 10.0
\end{array}\right|+\hat{k}\left|\begin{array}{cc}
2.0 & -4.0 \\
3.0 & 4.0
\end{array}\right|
\end{aligned}
$$

Solving the determinant of the 2×2 matrices gives

$$
\begin{aligned}
& \vec{A} \times \vec{C}=\hat{i}((-4.0)(10.0)-(4.0)(1.0))-\hat{j}((2.0)(10.0)-(3.0)(1.0))+\hat{k}((2.0)(4.0)-(3.0)(-4.0)) \\
& \vec{A} \times \vec{C}=-44.0 \hat{i}-17.0 \hat{j}+20.0 \hat{k}
\end{aligned}
$$

b) Find the cross product between $\vec{A}=3.0 \hat{i}+4.0 \hat{j}+10.0 \hat{k}$ and $\vec{C}=2.0 \hat{i}-4.0 \hat{j}+1.0 \hat{k}$.

Set up the matrix and find the determinant.

$$
\begin{aligned}
& \vec{A} \times \vec{C}=\left|\begin{array}{ccc}
\hat{i} & \hat{j} & \hat{k} \\
3.0 & 4.0 & 10.0 \\
2.0 & -4.0 & 1.0
\end{array}\right| \\
& \vec{A} \times \vec{C}=\hat{i}\left|\begin{array}{cc}
4.0 & 10.0 \\
-4.0 & 1.0
\end{array}\right|-\hat{j}\left|\begin{array}{cc}
3.0 & 10.0 \\
2.0 & 1.0
\end{array}\right|+\hat{k}\left|\begin{array}{cc}
3.0 & 4.0 \\
2.0 & -4.0
\end{array}\right| \\
& \vec{A} \times \vec{C}=\hat{i}((4.0)(1.0)-(-4.0)(10.0))-\hat{j}((3.0)(1.0)-(2.0)(10.0))+\hat{k}((3.0)(-4.0)-(2.0)(4.0)) \\
& \vec{A} \times \vec{C}=44.0 \hat{i}+17.0 \hat{j}-20.0 \hat{k}
\end{aligned}
$$

Notice the sign has changed between parts a) and b) because we interchanged the order of the cross product. This results in a switching of two rows in the matrix. (Note: When swapping rows or columns in a matrix, the determinant maintains its magnitude, but changes its sign.)
c) Find the cross product between $\vec{A}=-3.0 \hat{i}-4.0 \hat{j}$ and $\vec{C}=-3.0 \hat{i}+4.0 \hat{j}$.

Set up the matrix and find the determinant using expansion by minors. If a coordinate is missing, there is an implied zero for that coordinate.

$$
\begin{aligned}
& \vec{A} \times \vec{C}=\left|\begin{array}{ccc}
\hat{i} & \hat{j} & \hat{k} \\
-3.0 & -4.0 & 0 \\
-3.0 & 4.0 & 0
\end{array}\right| \\
& \vec{A} \times \vec{C}=\hat{i}\left|\begin{array}{cc}
-4.0 & 0 \\
4.0 & 0
\end{array}\right|-\hat{j}\left|\begin{array}{cc}
-3.0 & 0 \\
-3.0 & 0
\end{array}\right|+\hat{k}\left|\begin{array}{cc}
-3.0 & -4.0 \\
-3.0 & 4.0
\end{array}\right|
\end{aligned}
$$

Solving the determinant of the 2×2 matrices gives

$$
\vec{A} \times \vec{C}=\hat{i}((-4.0)(0)-(4.0)(0))-\hat{j}((-3.0)(0)-(-3.0)(0))+\hat{k}((-3.0)(4.0)-(-3.0)(-4.0))
$$

[^0]\[

$$
\begin{aligned}
& \vec{A} \times \vec{C}=0 \hat{i}+0 \hat{j}-24.0 \hat{k} \\
& \vec{A} \times \vec{C}=-24.0 \hat{k}
\end{aligned}
$$
\]

Notice that vectors A and C were in the $\mathrm{x}-\mathrm{y}$ plane. The result of the cross product is perpendicular to the x-y plane and, therefore, only in the z-direction.
d) Find the cross product between $\vec{A}=-9.0 \hat{j}$ and $\vec{C}=-2.0 \hat{i}+3.0 \hat{j}+2.0 \hat{k}$.

Set up the matrix and find the determinant using expansion by minors.

$$
\begin{aligned}
& \vec{A} \times \vec{C}=\left|\begin{array}{ccc}
\hat{i} & \hat{j} & \hat{k} \\
0 & -9.0 & 0 \\
-2.0 & 3.0 & 2.0
\end{array}\right| \\
& \vec{A} \times \vec{C}=\hat{i}\left|\begin{array}{cc}
-9.0 & 0 \\
3.0 & 2.0
\end{array}\right|-\hat{j}\left|\begin{array}{cc}
0 & 0 \\
-2.0 & 2.0
\end{array}\right|+\hat{k}\left|\begin{array}{cc}
0 & -9.0 \\
-2.0 & 3.0
\end{array}\right|
\end{aligned}
$$

Solving the determinant of the 2×2 matrices gives

$$
\begin{aligned}
& \vec{A} \times \vec{C}=\hat{i}((-9.0)(2.0)-(3.0)(0))-\hat{j}((0)(2.0)-(-2.0)(0))+\hat{k}((0)(3.0)-(-2.0)(-9.0)) \\
& \vec{A} \times \vec{C}=-18.0 \hat{i}+0 \hat{j}-18.0 \hat{k}
\end{aligned}
$$

Notice that vector A is only in the y-direction. Therefore, the cross product will be perpendicular to that direction and only have components in the x and z directions.

[^0]: ${ }^{\dagger}$ Problem from University Physics by Ling, Sanny and Moebs (OpenStax)

