

Solution

Start by expressing each of the vectors from the diagram in component vector form.

$$
\begin{aligned}
\vec{A} & =A \cos (\theta) \hat{i}+A \sin (\theta) \hat{j}=10.0 \cos \left(30^{\circ}\right) \hat{i}+10.0 \sin \left(30^{\circ}\right) \hat{j}=8.66 \hat{i}+5.00 \hat{j} \\
\vec{B} & =B \cos (\theta) \hat{i}+B \sin (\theta) \hat{j}=5.0 \cos \left(53^{\circ}\right) \hat{i}+5.0 \sin \left(53^{\circ}\right) \hat{j}=3.01 \hat{i}+3.99 \hat{j} \\
\vec{C} & =C \cos (\theta) \hat{i}+C \sin (\theta) \hat{j}=12.0 \cos \left(-60^{\circ}\right) \hat{i}+12.0 \sin \left(-60^{\circ}\right) \hat{j}=6.00 \hat{i}-10.39 \hat{j}
\end{aligned}
$$

We need to be careful with D. It is pointing in the 2 nd quadrant. I could express the angle with respect to the positive x -axis and use the formulas as with the previous vectors. If the angle $180^{\circ}-37^{\circ}=143^{\circ}$ is used, the signs for the x and y components will be correct. I find an easier way is to use the given angle and explicitely assign the proper signs to the components. In the 2nd quadrant, the x -component should be negative and the y-component should be positive. I will do the same thing for vector F .

$$
\vec{D}=D \cos (\theta) \hat{i}+D \sin (\theta) \hat{j}=-20.0 \cos \left(37^{\circ}\right) \hat{i}+20.0 \sin \left(37^{\circ}\right) \hat{j}=-15.97 \hat{i}+12.04 \hat{j}
$$

Vector F is pointing into the 3rd quadrant. Therefore, both the x and y components should be negative.

$$
\vec{F}=F \cos (\theta) \hat{i}+F \sin (\theta) \hat{j}=-20.0 \cos \left(30^{\circ}\right) \hat{i}-20.0 \sin \left(30^{\circ}\right) \hat{j}=-17.32 \hat{i}-10.00 \hat{j}
$$

Now we can answer the questions.
a) Find $\vec{A}+\vec{B}$.

$$
\vec{A}+\vec{B}=8.66 \hat{i}+5.00 \hat{j}+3.01 \hat{i}+3.99 \hat{j}=11.67 \hat{i}+8.99 \hat{j}
$$

b) Find $\vec{A}+\vec{B}$.

$$
\vec{C}+\vec{B}=6.00 \hat{i}-10.39 \hat{j}+3.01 \hat{i}+3.99 \hat{j}=9.01 \hat{i}-6.40 \hat{j}
$$

c) Find $\vec{D}+\vec{F}$.

$$
\vec{D}+\vec{F}=-15.97 \hat{i}+12.04 \hat{j}-17.32 \hat{i}-10.00 \hat{j}=-33.29 \hat{i}+2.04 \hat{j}
$$

[^0]d) Find $\vec{A}-\vec{B}$.
$$
\vec{A}-\vec{B}=(8.66 \hat{i}+5.00 \hat{j})-(3.01 \hat{i}+3.99 \hat{j})=5.65 \hat{i}+1.01 \hat{j}
$$
e) Find $\vec{D}-\vec{F}$.
$$
\vec{D}-\vec{F}=(-15.97 \hat{i}+12.04 \hat{j})-(-17.32 \hat{i}-10.00 \hat{j})=1.35 \hat{i}+22.04 \hat{j}
$$
f) Find $\vec{A}+2 \vec{F}$.
$$
\vec{A}+2 \vec{F}=(8.66 \hat{i}+5.00 \hat{j})+2(-17.32 \hat{i}-10.00 \hat{j})=-25.98 \hat{i}+-15.00 \hat{j}
$$
g) Find $\vec{C}-2 \vec{D}+3 \vec{F}$.
$$
\vec{C}-2 \vec{D}+3 \vec{F}=(6.00 \hat{i}-10.39 \hat{j})-2(-15.97 \hat{i}+12.04 \hat{j})+3(-17.32 \hat{i}-10.00 \hat{j})=-14.02 \hat{i}-64.47 \hat{j}
$$
h) Find $\vec{A}-4 \vec{D}+2 \vec{F}$.
$$
\vec{A}-2 \vec{D}+3 \vec{F}=(8.66 \hat{i}+5.00 \hat{j})-4(-15.97 \hat{i}+12.04 \hat{j})+2(-17.32 \hat{i}-10.00 \hat{j})=37.90 \hat{i}-63.16 \hat{j}
$$

It looks like the author might intend the answers be given to the closest $1 / 10$ th. You could round the answers I have given to the $1 / 10$ th place and see how they compare to your work.

[^0]: ${ }^{\dagger}$ Problem from University Physics by Ling, Sanny and Moebs (OpenStax)

