Chapter 2 Problem 46^{\dagger}

Solution

Find the displacement vector of the fly in the room.
The position of the fly at point b in unit vector notation is

$$
\vec{b}=\{4.0 \hat{i}+1.5 \hat{j}+2.5 \hat{k}\} m
$$

The position of the fly at point e in unit vector notation is

$$
\vec{e}=\{1.0 \hat{i}+4.5 \hat{j}+0.5 \hat{k}\} m
$$

The displacement of the fly in the room between points b and e is

$$
\begin{aligned}
& \text { displace }=\vec{e}-\vec{b}=\{1.0 \hat{i}+4.5 \hat{j}+0.5 \hat{k}\}-\{4.0 \hat{i}+1.5 \hat{j}+2.5 \hat{k}\} \\
& \text { displace }=\{(1.0-4.0) \hat{i}+(4.5-1.5) \hat{j}+(0.5-2.5 \hat{k}\}=\{-3.0 \hat{i}+3.0 \hat{j}+-2.0 \hat{k}\}
\end{aligned}
$$

The magnitude of this vector is.

$$
\text { displace }=\sqrt{(-3.0)^{2}+(3.0)^{2}+(-2.0)^{2}}=4.69 \mathrm{~m}
$$

Assume the numbers are good to 2 significant figures, the magnitude of the displacement is 4.7 m .

[^0]
[^0]: ${ }^{\dagger}$ Problem from University Physics by Ling, Sanny and Moebs (OpenStax)

