Chapter 2 Problem $43{ }^{\dagger}$

Solution

Find the distance between the two points in Cartesian coordinates.
The first point (green) is located at $(2.500 m, \pi / 6)$. The x -component of this point is

$$
x_{1}=(2.500 m) \cos (\pi / 6)=2.165 m
$$

The y-component is

$$
y_{1}=(2.500 m) \sin (\pi / 6)=1.250 m
$$

In unit vector notation, this is

$$
\overrightarrow{v_{1}}=\{2.165 \hat{i}+1.250 \hat{j}\} m
$$

In Cartesian coordinates, it is expressed as $P_{1}(2.165 m, 1.250 m)$.
The second point (blue) is located at $(3.800 m, 2 \pi / 3)$. The x -component of this point is

$$
x_{2}=(3.800 m) \cos (2 \pi / 3)=-1.900 m
$$

The y-component is

$$
y_{2}=(3.800 m) \sin (2 \pi / 3)=3.291 \mathrm{~m}
$$

In unit vector notation, this is

$$
\overrightarrow{v_{2}}=\{-1.900 \hat{i}+3.291 \hat{j}\} m
$$

In Cartesian coordinates, we have $P_{2}(-1.900 m, 3.291 m)$.
The displacement between these two points is the difference between the position vectors.

$$
\begin{aligned}
& \overrightarrow{v_{12}}=\overrightarrow{v_{2}}-\overrightarrow{v_{1}}=\{-1.900 \hat{i}+3.291 \hat{j}\}-\{2.165 \hat{i}+1.250 \hat{j}\} \\
& \overrightarrow{v_{12}}=(-1.900-2.165) \hat{i}+(3.291-1.250) \hat{j}=\{-4.065 \hat{i}+2.041 \hat{j}\} m
\end{aligned}
$$

The magnitude of this vector is.

$$
v_{12}=\sqrt{(-4.065)^{2}+(2.041)^{2}}=4.549 \mathrm{~m}
$$

Reporting this value to the closest centimeter gives 4.55 m .

[^0]
[^0]: ${ }^{\dagger}$ Problem from University Physics by Ling, Sanny and Moebs (OpenStax)

