Chapter 2 Problem 38^{\dagger}

Solution

Find the displacement from the starting point.
The first part of the walk is.

$$
\vec{A}=-18.0 \hat{i} \mathrm{~m}
$$

The second part of the walk is.

$$
\vec{B}=25.0 \hat{j} m
$$

The displacement is the vector sum

$$
\vec{C}=\vec{A}+\vec{B}=-18.0 \hat{i} m+\vec{B}=25.0 \hat{j} m
$$

The magnitude of this vector is.

$$
C=\sqrt{C_{x}^{2}+C_{y}^{2}}=\sqrt{(-18.0)^{2}+(25.0)^{2}}=\sqrt{949}=30.8 \mathrm{~m}
$$

Since the initial values are good to three significant digits, this answer is also good to three significant digits.
The direction of the displacement is obtained by doing trigonometry.

$$
\beta=\tan ^{-1}\left(\frac{25.0 m}{-18.0 m}\right)=-54.3^{\circ}
$$

Since the x-component is negative and the y-component is positive, the answer should be in the 2 nd quadrant. The answer given by the calculator implies it is in the 4th quadrant. Therefore, 180° must be added to move the answer into the 2 nd quadrant.

$$
\beta=-54.3^{\circ}+180^{\circ}=126^{\circ}
$$

An equally acceptable answer and one that communicates the direction better is to calculate the angle while ignoring the signs on the components.

$$
\theta=\tan ^{-1}\left(\frac{25.0 m}{18.0 m}\right)=54.3^{\circ}
$$

We have already determined that the vector is in the 2nd quadrant. Since tangent is the ratio of opposite over adjacent sides, the angle θ goes between the negative x -axis and the vector C . The negative x -axis is west and the positive y-axis is north; therefore, the direction is 54.3° north of west.

[^0]
[^0]: ${ }^{\dagger}$ Problem from University Physics by Ling, Sanny and Moebs (OpenStax)

