## Chapter 1 Problem $86^{\dagger}$

## Given

length $=3.955 \pm 0.005 \mathrm{~m}$
width $=3.050 \pm 0.005 \mathrm{~m}$

## Solution

Find the area and uncertainty of the area for the room.
Area is length times width.

$$
A=l \cdot w=(3.955 m)(3.050 m)=12.06275 \mathrm{~m}^{2}
$$

We should expect the answer to be good to four sig.figs. That would give us

$$
A=12.06 \mathrm{~m}^{2}
$$

For a rough estimate of error, we could assume the last digit is off by 1 , thus giving $\pm 0.01 \mathrm{~m}^{2}$. However, a more accurate estimate of error is to add the percentage of error for the length and width.

$$
\begin{aligned}
& \text { length percent error }=\frac{\Delta l}{l} \times 100 \%=\frac{.005 \mathrm{~m}}{3.955 \mathrm{~m}} \times 100 \%=0.126 \% \\
& \text { width percent error }=\frac{\Delta w}{w} \times 100 \%=\frac{.005 \mathrm{~m}}{3.050 \mathrm{~m}} \times 100 \%=0.164 \%
\end{aligned}
$$

Therefore,

$$
\text { area percent error }=0.126 \%+0.164 \%=0.290 \%
$$

The uncertainty in the area is then

$$
\begin{aligned}
& \Delta A=A\left(\frac{\text { area percent error }}{100 \%}\right) \\
& \Delta A=\left(12.06275 \mathrm{~m}^{2}\right)\left(\frac{0.29 \%}{100 \%}\right)=0.035 \mathrm{~m}^{2}
\end{aligned}
$$

The area of the room is

$$
A=12.06 \pm 0.04 \mathrm{~m}^{2}
$$

Notice the answer really is good to four significant digits, but the uncertainty is a bit larger than our rough estimate.

Also notice, that the measurement error is $1 / 2 \mathrm{~cm}$. If the room were $1 / 2 \mathrm{~cm}$ larger in both length and width, the new area would be $12.0978 \mathrm{~m}^{2}$. This value is 0.03505 larger than our calculated value, which is right in line with our calculated uncertainty. You could do the same calculation assuming the length and width are $1 / 2 \mathrm{~cm}$ smaller than the given value. You will get a difference of comparable value.

[^0]
[^0]:    ${ }^{\dagger}$ Problem from University Physics by Ling, Sanny and Moebs (OpenStax)

