Chapter 1 Problem $63{ }^{\dagger}$

Given

$\rho_{\text {sun }}=1000 \mathrm{~kg} / \mathrm{m}^{3}$

Solution

a) Estimate the diameter of the sun.

From the textbook, the approximate mass of the sun is $10^{30} \mathrm{~kg}$. The volume of a sphere is

$$
V=\frac{4}{3} \pi r^{3}=\frac{4}{3} \pi(D / 2)^{3}=\frac{1}{6} \pi D^{3}
$$

Density equals mass divided by volume; therefore, the mass equals

$$
m=\rho V=\rho \frac{\pi D^{3}}{6}
$$

Solving for diameter gives

$$
\begin{aligned}
D^{3} & =\frac{6 m}{\rho \pi} \\
D & =\left(\frac{6 m}{\rho \pi}\right)^{1 / 3} \\
D & =\left(\frac{6\left(10^{30} \mathrm{~kg}\right)}{\left(1000 \mathrm{~kg} / \mathrm{m}^{3}\right) \pi}\right)^{1 / 3} \\
D & =\left(1.9 \times 10^{27} \mathrm{~m}\right)^{1 / 3}=1.2 \times 10^{9} \mathrm{~m}
\end{aligned}
$$

b) Find the distance from the earth to the sun.

The sun subtends $1 / 2$ degree in the sky. Convert this into radians gives

$$
\theta=0.5^{\circ}\left(\frac{\pi r a d}{180^{\circ}}\right)=8.7 \times 10^{-3} \mathrm{rad}
$$

Assume the earth has a circular orbit around the earth. When the angle is in radians, the relationship between arc length and radius of the circle is

$$
s=r \theta
$$

The diameter of the sun is the arc length. Solving for radius gives

$$
r=\frac{s}{\theta}=\frac{1.2 \times 10^{9} \mathrm{~m}}{8.7 \times 10^{-3} \mathrm{rad}}=1.4 \times 10^{11} \mathrm{~m}
$$

