Chapter 1 Problem $40{ }^{\dagger}$

Given

$d_{e s}=1.5 \times 10^{11} \mathrm{~m}$

Solution

a) Find the average speed of the earth as it orits the sun.

First calculate the circumference of the earth orbit.

$$
C=2 \pi r=2 \pi\left(1.5 \times 10^{11} \mathrm{~m}\right)=9.4 \times 10^{11} \mathrm{~m}
$$

It takes one year for the earth to orbit the sun. Find the number of seconds in a year.

$$
1 \text { year }\left(\frac{365.25 \text { day }}{1 \text { year }}\right)\left(\frac{24 \mathrm{hr}}{1 \text { day }}\right)\left(\frac{60 \mathrm{~min}}{1 \mathrm{hr}}\right)\left(\frac{60 \mathrm{~s}}{1 \mathrm{~min}}\right)=3.16 \times 10^{7} \mathrm{~s}
$$

Velocity is distance divided by time.

$$
v=\frac{d}{t}=\frac{9.4 \times 10^{11} \mathrm{~m}}{3.16 \times 10^{7} \mathrm{~s}}=2.97 \times 10^{4} \mathrm{~m} / \mathrm{s}
$$

b) Conver this speed into miles per hour.

Convert seconds into hours and meters into miles using $1 \mathrm{hr}=3600 \mathrm{~s}$ and $1 \mathrm{mi}=1600 \mathrm{~m}$.

$$
v=2.97 \times 10^{4} \mathrm{~m} / \mathrm{s}\left(\frac{1 \mathrm{mi}}{1600 \mathrm{~m}}\right)\left(\frac{3600 \mathrm{~s}}{1 \mathrm{hr}}\right)=6.7 \times 10^{4} \mathrm{hi} / \mathrm{hr}
$$

[^0]
[^0]: ${ }^{\dagger}$ Problem from University Physics by Ling, Sanny and Moebs (OpenStax)

